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Abstract 

In risk evaluation, the effect of mixtures of environmental chemicals on a common 

adverse outcome is of interest. However, due to the high dimensionality and inherent correlations 

among chemicals that occur together, the traditional methods (e.g. ordinary or logistic 

regression) are unsuitable. We extend and characterize a weighted quantile score (WQS) 

approach to estimating an index for a set of highly correlated components. In the case with 

environmental chemicals, we use the WQS to identify “bad actors” and estimate body burden. 

The accuracy of the WQS was evaluated through extensive simulation studies in terms of 

validity (ability of the WQS to select the correct components) and reliability (the variability of 

the estimated weights across bootstrap samples). The WQS demonstrated high validity and 

reliability in scenarios with relatively high correlations with an outcome and moderate 

breakdown in cases where the correlation with the outcome was relatively small compared to the 

pairwise correlations. In cases where components are independent, weights can be interpreted as 

association with the outcome relative to the other components. In cases with complex correlation 

patterns, weights are influenced by both importance with the outcome and the correlation 

structure.  The WQS also showed improvements over ordinary regression and LASSO in the 

simulations performed. To conclude, an application of this method on the association between 

environmental chemicals, nutrition and liver toxicity, as measured by ALT (alanine amino-

transferase) is presented. The application identifies environmental chemicals (PCBs, dioxins, 

furans and heavy metals) that are associated with an increase in ALT and a set of nutrients that 

are identified as non-chemical stressors due to an association with an increase in ALT.  
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I. Introduction and Motivation 

1.1 Motivation 

In risk evaluation, the effect of mixtures of environmental chemicals on a common 

adverse outcome is of interest.  However, due to the high dimensionality and inherent 

correlations among chemicals that occur together, the traditional methods (e.g. ordinary or 

logistic regression) are unsuitable. To illustrate, suppose we are interested in modeling risk for 

log HDL (high density lipoprotein, an indicator of high cholesterol and a factor associated with 

increased risk of cardiovascular disease) based on biomonitoring data for urinary levels of a set 

of phthalate monoesters. In this case, the correlation structure among the set of phthalate 

monoesters (these phthalate monoesters are explained further in Table 1.1) is given in Figure 1.1, 

using biomonitoring data from the National Health And Nutrition Examination Survey from the 

2007-2008 cycle (CDC: NCHS, 2012).   

Figure 1.1: Correlation Structure of Set of Eleven Phthalate Monoesters 

 

The correlation structure for these chemicals is complex, ranging from near 0 correlations to near 

perfect correlation (0.92). Due to the complex nature of the correlations, traditional regression 

models would suffer from problems with variance inflation of parameter estimates. 

CNP COP ECP MBP MC1 MEP MHH MHP MIB MOH MZP

CNP 1 0.40 0.24 0.06 0.37 0.03 0.17 0.16 0.05 0.19 0.04

COP 1 0.41 0.13 0.56 <0.01 0.34 0.20 0.17 0.37 0.13

ECP 1 0.23 0.39 0.04 0.84 0.53 0.20 0.85 0.18

MBP 1 0.34 0.15 0.28 0.19 0.51 0.29 0.39

MC1 1 0.01 0.36 0.21 0.21 0.40 0.25

MEP 1 0.05 0.04 0.14 0.05 0.03

MHH 1 0.59 0.28 0.92 0.24

MHP 1 0.18 0.57 0.09

MIB 1 0.30 0.28

MOH 1 0.23

MZP 1

Note: Data collected from spot urine, adjusted for creatnine, and categorized into quartiles (0-3)

Bold values= significant at 0.05 level
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1.2 Current Methods 

Several techniques have been proposed to combat this problem, including Ridge 

Regression, LASSO, and the Elastic Net.  In ridge regression, all p predictors remain in the 

model but are biased slightly to decrease the variance of the parameter estimates. This prevents a 

parsimonious model and complicates the interpretability (Zou and Hastie 2005). The LASSO 

technique was developed by Tibshirani (1996) to improve accuracy (by reducing parameter 

estimate variance) and allow for better interpretability. The LASSO method imposes a tuning 

parameter on the parameters which forces some variables to zero while others are minimized 

until the residual sums of squares is minimized and the sum of the absolute value of the 

parameters is less than a specified constant (Tibshirani, 1996). The elastic net, like the LASSO, 

shrinks variance and selects a subset of the original predictors through a regularization bias on 

the original predictors (Zou and Hastie 2005). While these methods are convenient and well-

supported, they have limitations. As stated before, ridge regression models do not reduce the 

dimensionality of the problem. In the presence of high correlations among predictor variables, 

the LASSO method has been shown to select an arbitrary member from the group (Zou and 

Hastie, 2005). The elastic net method has a “grouping effect” that causes correlated predictors to 

either all be eliminated from the model or all used in the model (Zou and Hastie, 2005). 

These methods are more suitable if prediction is the primary purpose of the research. 

However, when the goal of the model is to evaluate relationship or determine risk of given 

predictors on an outcome, there is reason to consider an alternative.  

A common method for determining risk between highly correlated environmental 

chemicals and a health outcome is to consider only the single chemical, single outcome effect. 
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This method may not be affected by variance inflation but it does not take into account the 

mixture effect of environmental chemical exposures. Biomonitoring data from NHANES shows 

that exposure to multiple environmental chemicals is widespread. Subjects in the NHANES 

dataset have both blood serum levels and urinary levels of an extensive number of chemicals 

measured. A given subject has levels above the limit of detection (LOD) on most chemicals 

evaluated. Consider the 1732 subjects with the correlation structure from Figure 1.1, the percent 

above LOD for each of these phthalate monoesters is given in Table 1.1.   

Table 1.1: Percent Above LOD for 13 Phthalate Monoesters from NHANES 2007-2008 

Phthalate Monoesters (Abbreviation) % Above LOD 

Mono(carboxynonyl) Phthalate (CNP) 90 

Mono(carboxyoctyl) Phthalate (COP) 96 

Mono-2-ethyl-5-carboxypentyl phthalate (ECP) 100 

Mono-n-butyl phthalate (MBP) 99 

Mono-(3-carboxypropyl) phthalate (MC1) 98 

Mono-ethyl phthalate (MEP) 100 

Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MHH) 100 

Mono-(2-ethyl)-hexyl phthalate (MHP) 67 

Mono-isobutyl phthalate (MIB) 100 

Mono-(2-ethyl-5-oxohexyl) phthalate (MOH) 98 

Mono-benzyl phthalate (MZP) 98 

 

For the eleven phthalates given in Table 1.1, the limit of detection was at least 65% for these 

eleven phthalates. There were four other phthalates measured in the NHANES subsample; the 

percent above LOD for those four was less than 50%. Because these chemicals are detectable in 

such a high percentage of subjects (in a very large, national sample) and because they are so 

highly correlated, analyzing their effect on a health outcome simultaneously with current 

methods (ordinary regression) or individually does not take into account the possible mixture 
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effect. There is a need for a method that takes into account the complexity of the exposure 

pattern, but is more robust to multicollinearity.  

 Swan, et al (2008) proposed using a score created by quartile scoring phthalate monoester 

levels and then adding the total exposure amount. By quartile scoring, the effect of differing 

potencies and the skewness in exposure patterns are controlled. This method also will not suffer 

from the multicollinearity issues in ordinary regression. What this method lacks is 

interpretability. In a risk analysis setting, the goal is to detect “bad actors,” which has motivated 

our method.  

We propose extending the work of Gennings, et al (2010) and Christensen, et al (2013) 

by using a weighted index in which weights are empirically determined and are calculated to 

optimize the likelihood of the desired model. The components of the index are selected based on 

logical groupings and the weights are constrained to sum to 1 and be between 0 and 1 allowing 

them to be interpreted as an index for body burden. The weights are estimated from the data 

using a bootstrap analysis with validation in an independent validation dataset. This method 

reduces the dimensionality and the issues with multicollinearity while maintaining 

interpretability. We define and characterize this approach in terms of the validity and reliability 

of the weights. The validity of the weights is determined by the WQS approach’s ability to place 

weights on the correct components. The reliability of the weights is assessed by the variance of 

the assigned weights. Both are evaluated through simulation.  
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1.3 Prospectus 

The goal of this thesis is to extend, characterize, and apply the weighted quantile score 

approach. Chapter 2 presents a heuristic argument for the increased stability of the proposed 

method over ordinary regression and LASSO. Then, through extensive simulations, we evaluate 

the validity (ability to detect components that are simulated to be “bad actors”) and the reliability 

of the weights estimated (i.e. the variability of the estimated weights across the bootstrap 

samples). We use validity and reliability to compare the method at hand to LASSO. 

Chapter 3 contains supplementary material for Chapter 2. This material includes 

additional simulation cases: varying sample sizes, different correlation patterns (correlation with 

outcome changed and/or pairwise correlations altered). A comparison to LASSO from Chapter 2 

is also extended to include different selection criterion. The extra simulations are assessed for 

their validity and reliability, especially as compared to LASSO and the simulations given in 

Chapter 2. The chapter concludes with a real data example of the improvement associated with 

the bootstrap analysis. 

Chapter 4 is an application of the method using NHANES data and modeling liver 

toxicity. In this chapter, we not only estimate an index for a set of environmental chemicals, but 

also for a non-chemical stressor on liver health. In risk assesment focus was shifted to such “non-

chemical stressors” after the National Research Council’s report in 2009 recommended the 

consideration of both chemical and non-chemical stressors on public health (Lewis, 2011). 

Common non-chemical stressors include socio-economic status, race/ethnicity, obesity, 

occupational and community-related exposures, and many more. We estimate a nutritional index 

to determine if poor nutrition is a non-chemical stressor for liver health.  Other non-chemical 



www.manaraa.com

 
 

6 
 

stressors like gender, age, race/ethnicity, BMI, and poverty:income ratio are considered as 

covariates, but not in an index.  

 Chapters 2 and 4 in this thesis are written as standalone manuscripts for submission for 

peer review publication, so there may be repeated information.  

The overall goal of this thesis is to extend and characterize the weighted quantile score 

approach for highly correlated data in a risk analysis setting. We show that theoretically, the 

approach has improved stability due to the addition of the constraint for the optimization. We 

demonstrate this improved stability along with improved false positive and false negative rates 

through simulations. We show that the weighted quantile score approach may outperform both 

ordinary least squares and LASSO methods.  
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II. Characterization of a Weighted Quantile Score Approach for Highly Correlated Data in 

a Risk Analysis Setting 

 

Introduction 

1.1 Motivation 

In risk evaluation, the effect of mixtures of environmental chemicals on a common 

adverse outcome is of interest.  However, due to the high dimensionality and inherent 

correlations among chemicals that occur together, the traditional methods (e.g. ordinary or 

logistic regression) suffer from multicollinearity and variance inflation. To illustrate, suppose we 

are interested in modeling risk for log HDL (high density lipoprotein, an indicator of poor 

cardiovascular health) based on biomonitoring data for urinary levels of a set of phthalate 

monoesters. In this case, the correlation structure among the set of phthalate monoesters is given 

in Figure 1.1, using biomonitoring data from the National Health And Nutrition Examination 

Survey from the 2007-2008 cycle (CDC: NCHS, 2012).  The correlation structure for these 

chemicals is complex, ranging from near 0 correlations to near perfect correlation (0.92). Due to 

the complex nature of the correlations, traditional regression models would suffer from problems 

with variance inflation of parameter estimates. 

 

1.2 Current Methods 

Several techniques have been proposed to combat this problem, including Ridge 

Regression, LASSO, and the Elastic Net.  In ridge regression, all p predictors remain in the 

model but are biased slightly to decrease the variance of the parameter estimates. This prevents a 

parsimonious model and complicates the interpretability (Zou and Hastie 2005). The LASSO 
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technique was developed by Tibshirani (1996) to improve accuracy (by reducing parameter 

estimate variance) and allow for better interpretability. The LASSO method imposes a tuning 

parameter on the parameters which forces some variables to zero while others are minimized 

until the residual sums of squares is minimized and the sum of the absolute value of the 

parameters is less than a specified constant (Tibshirani, 1996). The elastic net, like the LASSO, 

shrinks variance and selects a subset of the original predictors through a regularization bias on 

the original predictors (Zou and Hastie 2005). While these methods are convenient and well-

supported, they have limitations. As stated before, ridge regression models do not reduce the 

dimensionality of the problem. In the presence of high correlations among predictor variables, 

the LASSO method has been shown to select an arbitrary member from the group (Zou and 

Hastie, 2005). The elastic net method has a “grouping effect” that causes correlated predictors to 

either all be eliminated from the model or all be used in the model (Zou and Hastie, 2005). 

These methods are more suitable if prediction is the primary purpose of the research. For 

example, if the goal is to show association between phthalates as a whole and HDL, LASSO, 

ridge regression, or elastic net may be suitable. But when the objective is to determine which 

phthalates in particular are associated with HDL, a different method is needed. This has 

motivated our proposed method, the weighted quantile score approach.  

Extending and characterizing the work of Gennings, et al (2010) and Christensen, et al 

(2013), we propose using a weighted linear index in which weights are empirically determined 

through bootstrap sampling. The components of the index are selected based on logical 

groupings of components that occur together and would have a common adverse outcome. The 

weights are constrained to sum to 1 and be between 0 and 1, reducing the dimensionality and the 

issues with multicollinearity while maintaining interpretability. We define and characterize this 
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approach in terms of the validity and reliability of the weights. The validity of the weights is 

determined by the WQS approach’s ability to place weights on the correct components (in 

simulations, the correlation with the outcome will be set, so the correct components are known). 

The reliability of the weights is assessed by the variance of the assigned weights. Both are 

evaluated through simulation. 

Methods 

2.1 Model and General Method Steps 

Consider data with correlated components (c components) that are reasonable to combine 

into an index. Let the values for the c components be scored into quartiles, denoted qi for i=1 to 

c. The data (total sample size N=N1+N2) are first split into a test (N1) and a validation dataset 

(N2). Bootstrap samples of size N1 are generated from the test dataset (typically B=1000 

bootstrap samples) and are used to estimate the unknown weights, wi, that maximize the 

likelihood for the model for b=1 to B:  

 

c

0 1 i i

i=1 b

th

i i

c

i i b
i=1 b

g(μ)=β +β * w *q

Where w is a c 1 vector of weights, w  for the i  component q

with w 1 and 0 w 1





  





z`φ

  (2.1) 

Using the above notation, g represents  any monotonic, differentiable link function as in a 

generalized linear model, which links the mean, μ , to the predictor variables. The term, 

∑      
 
    represents the weighted index for the set of c chemicals of interest, and wi represents 

the weight associated with the i
th

 components (whose quantile score is denoted qi). The 
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covariates of interest are accounted for in the vector, z and need to be determined prior to 

estimating the weights. In order to accomplish weights that are empirically based, each bootstrap 

sample is used to estimate the weights that maximize the likelihood for Equation 2.1. These 

estimated weights are tested in each bootstrap sample. The weights that are significantly 

validated in each bootstrap sample are used to estimate the weighted quantile score, WQS: 

 

B

0 1

c

i i

i=1

n

i i B 1i=1
B

g(μ)=β +β *WQS

where WQS w *q

1
w w ,  n = number of bootstrap samples in which β  was significant

n











z`φ

  (2.2) 

  In order to empirically and simultaneously estimate the weights and the parameters, we 

employ optimization algorithms that maximize a continuous nonlinear function subject to a 

linear constraint, 
i1

w 1
c

i
 and bounds iw [0,1] . So, for our case, we have a general 

nonlinear optimization function subject to one linear constraint (boundaries are not effected by 

optimization methods as they just limit the parameter space). Optimization algorithms available 

include, Trust Region Method, Newton-Raphson with Line Search or Ridging, the Quasi-Newton 

Method, and the Conjugate Gradient Methods (SAS 9.2 Documentation). We have chosen Trust 

Region method for this paper, because it allows for a linear constraint on a nonlinear objective 

function and was stable. A description of this optimization strategy is given in Numerical 

Optimization by Nocedal and Wright (1999). The NLP procedure in SAS 9.2 treats the 

constrained optimization in the Lagrange format under the Kuhn-Tucker Conditions (SAS 

Manual).  
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2.2 Heuristic Argument for Improved Stability 

 Common uses of constrained optimizations include ridge regression and the LASSO 

models. The forms of these models (Hastie, et al 2009) are:  

 

j

1
2 2

ridge 0 ij j
β

1 1 1

1
2

lasso 0 ij j
β

1 1 1

β̂ arg min[ ( β x *β ) ( β t)]

β̂ arg min[ ( β x *β ) ( β t)]

p pn

i

i j j

p pn

i j

i j j

y

y







  



  

    

    

  

  

  (2.3) 

Both constrained optimization problems are of the Lagrangian form with different constraints. 

The parameter, λ , is the Lagrange multiplier and t is a presepecified tuning parameter.  Hoerl 

and Kennard (1970) demonstrated that in a regression case with multicollinearity, the added 

constraint in a ridge regression setting stabilizes the estimate ridgeβ̂ by making the paramater space 

“more orthogonal” (i.e. decreasing the effect of multicollinearity). Hoerl and Kennard 

demonstrate that the added constraint results in a smaller range in the eigenvalues (i.e. a smaller 

eigenvalue spectrum). Similarily, the proposed weighted quantile score model in (2.1) can be 

written in the Lagrangian format. In this framework, for g( μ )= μ , the form of the model (2.1) 

would be:  

 

 0 1 1 2 c-1

2

wqs 0 1 i i i1
θ 1 1

wqs
θ

In least squares optimization, for a parameter vector 

= β β w w w :

θ̂ arg min[ ( β +β * w *q ) ( w 1)]

or, equivalently, in maximum likelihood form:

θ̂ arg max[ln(L(X,θ))

c c
n

ii
i i

y 


 

    



  

θ` φ

z`φ

i

1

-λ( w 1)]
c

i



  (2.4) 
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Under this form of the equation, for each bootstrap sample, the log-likelihood for the model in 

equation 2.4 is optimized subject to the constraint that the sum of the weights is equal to 1. 

Following the argument from Hoerl and Kennard, the constraint stabilizes the estimation process 

by reducing the eigenvalue spectrum.  

A proxy for measuring this increased stability as indicated through the eigenvalue 

spectrum is through the condition number of a matrix, which is defined as the ratio of the largest 

to the smallest eigenvalue. We followed the methods of Anderson (2008) to evaluate the stability 

of the weighted quartile score approach compared to ordinary regression.  

Consider the normal equations for the estimation for an ordinary regression model:  

 

 
-1

X`X β=X`Y

β̂= X`X X`Y
 

In an ordinary regression model, the estimation step involves taking the inverse of X`X.  

 In order to estimate the parameters in the weighted quantile score approach, we need to 

derive the optimization steps. In order to incorporate the linear constraint into the optimization, 

we define the weights such that 
1

c i

1

w 1 w
c

i





  and therefore, the vector of parameters, θ , is 

defined as:  

 0 1 1 2 c-1= β β w w wθ` φ  

Using a Taylor series expansion for estimation in a nonlinear model we have the 

following:  
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s s+1 s

`

` `

s s+1 s

s s s+1 s

s s+1 s s

s+1 s 1 s s

s+1 s 1

δμ δG
=G(θ)=G(θ )+ (θ -θ )

δθ δθ

δG δμ δμ δμ
note: = * = =-H(θ)

δθ δθ δθ δθδθ

Setting equal to zero to optimize:

δG
0=G(θ )+ (θ -θ )

δθ

0=G(θ )-H(θ )*(θ -θ )

H(θ )*(θ -θ ) G(θ )

(θ -θ ) H (θ )*G(θ )

θ θ H (θ









  s s)*G(θ )

 

Where s+1θ  denotes the updated parameter estimates, sθ  denotes the estimates from the current 

step, H denotes the hessian matrix and G, the gradient vector both evaluated at the current step 

parameter estimates, sθ . So in the weighted quantile score approach, the optimization is 

contingent on the stability of H
-1

(θ ). Through derivation, the form of H(θ ) is:  

1 1

1 1 1 2 1 1,

1 1 1 1 1 1

1 1
2 2 2 2

1 1 1 2 1 1,

1 1 1 1 1 1

1

[ ( * ) (1 )* ] 2 2 2

[ ( * ) (1 )* ] 2 ( ) 2

2n 2

( ) 2 ( )

 2
H( )

n c c n n n

j ji k ci i ci i ci c i ci

i j k i i i

n c c n n n

j ji k ci i ci i ci c i ci

i j k i i i

w x w x x x x x x x

w x w x x x x x x x

  

  



 



     

 



     

    

   





    

    

θ
   

 

2

1 1 1 2 1 1 1,

1 1 1

2

1 2 1 2 1,

1 1

2

1 1,

1

( ) 2 *( ) 2 *( )

2 ( ) 2 *( )

2 (

M

)

SY

n n n

i ci i ci i ci i ci c i ci

i i i

n n

i ci i ci c i ci

i i

n

c i ci

i

x x x x x x x x x x

x x x x x x

x x

 

 





  



 





 
 
 
 
 
 
 
 
 
 
 
 
 
 


    

 


 




 

  

 



  

Based on the results from Hoerl and Kennard, we propose the precision of our method is 

attributed to the increased stability of H
-1

(θ ) over X`X. Both the hat matrix and the Hessian 

matrix were column-scaled (i.e. each element was divided by the norm of the column vector) to 

have unit length in order to allow for comparison of the condition numbers. We then calculated 
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the condition number, κ(A), as an indication of the stability of a matrix and the increased 

uniformity of the eigenvalue spectrum, using definition that the condition number is equal to the 

ratio of the maximum and minimum singular values:  

 ( )  
    
    

 

The singular values of a matrix A are defined as the values σi such that A=UΛV*, where Λ is a 

diagonal matrix with the value σi on the i
th

 diagonal. Here U is composed of the left-singular 

vectors of A (i.e. eigenvectors of AA`) and V contains the right-singular eigenvectors of A (i.e. 

eigenvectors of A`A). In the case of a square matrix, the singular values are the absolute values 

of the eigenvalues of the matrix. So in the case of a square matrix, the condition number is equal 

to:  

 ( )  
|

   
|

|
   
|
 

 To investigate the stability of both X`X and H(θ ), we simulated data for a set of 5 

phthalates (MHH, MHP, MIB, MOH AND MZP) with the following observed correlation 

structure in Figure 2.1. Details for simulating correlated data are given in Section 3.1.  

Figure 2.1: Correlation Structure (A) for MHH, MHP, MIB, MOH, MZP 

1 0.59 0.28 0.92 0.24 

  1 0.18 0.57 0.09 

    1 0.3 0.28 

      1 0.23 

        1 
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We used dampening parameters (m) from 0.05 to 1.05 (by 0.05) to see the tendencies as the 

correlation increases from 5% of the above correlations to 105% of the above correlations, using 

the equation A*=(A-I)m+I for m= 0.05 to 1.05 by 0.05. As in Hoerl and Kennard with ridge 

regression, we found that the parameter space is more orthogonal since the condition number is 

always smaller and increases much less severely than that of a multiple regression. This suggests 

that the estimates from the weighted quantile score approach are more stable and precise than 

those from ordinary regression models. Results are given in Figure 2.2.  
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Figure 2.2: Condition Number for Hessian from Weighted Quartile Score Approach (Hessian) 

and Multiple Regression (X`X) 
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Simulations 

3.1 Simulating Correlated Data 

 Our objective is to simulate normally distributed data N(M,∑) with a given correlation 

structure for an outcome y and predictors x1, x2,… xc. Let:  

1 2

1 2 1

1

1 2 c

1 1 2 1 c

2

c-1 c

c

1 corr(y, x ) corr(y, x ) corr(y, x )

1 corr(x , x ) corr(x , x )

1

SYM corr(x , x )

1

Var(y) Cov(y,x ) Cov(y,x ) Cov(y,x )

Var(x ) Cov(x ,x ) Cov(x ,x )

Var(x )

SYM Cov(x ,x )

Var(x )

c

c

c c

 
 
 
 
 
 
  









ρ

Σ

1

11

2

c
c

c

y
Var(y) SD(y)

x
SD(x )Var(x )

= x   and =

SD(x )Var(x )
x







 
 

                                  

m S
 

To impose the correlation structure, we first use the relationship between the correlation and the 

variance that yields:  

      ( )        ( ) 
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Then follow the following simulation steps (let p=c+1):   

1) Calculate the Cholesky Decomposition of ∑ (p x p dimension), such that ∑=Upxp`Upxp. (For 

full detail on this calculation, see Harville, 2008) 

2) Simulate Zi~N(0px1,Ip). Z`=[Z1 Z2 …. Zn], so Z will have nxp dimension where each 

observation is generated from a standard normal distribution.  

3) Let M= (m*11xn)` , Ynxp=Mnxp+Znxp*Upxp  and the i
th

 row is Yi=mpx1+U`(pxp)*Z i (px1)  

a) E(Y)=E(M+Z*U)= M+ E(Z)= M 

b) Var(Yi ) =Var(m+U`*Zi)= Var(m)+Var(U`*Zi)=0+U` U=∑ 

4) So, Yi is Np(m, ∑) 

In the first step, in order to calculate U, ∑ must be positive definite. To evaluate relevant cases 

with highly correlated data, ∑ may be near singular. In this case, we use matrix ridging to 

stabilize the matrix. Ridging a matrix involves adding a constant to the values on the diagonal of 

the matrix. If ∑ is not positive definite:  

 Define r, a ridge value (see table 3.1 for indication of the effect a given r will have on the 

correlations) 

 

1 2

1 2 1

1

1 corr(y, x ) corr(y, x ) corr(y, x )

1 corr(x , x ) corr(x , x )

* 1

SYM corr(x , x )

1

c

c

c c

r

r

r

r



 
 


 
  
 
 
  

ρ  

  diag * diag( )S SΣ ρ
* *

*   

 Follow steps 1-4 with the above substitutions 
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The higher the ridge, the greater the impact on the values of the matrix. Table 2.1 lists the 

average multiplier for a given element of the matrix for ridge values from 0 to 0.5. So, for 

example, adding a ridge of 0.1 to the diagonals (i.e. making the diagonals of the correlation 

matrix 1.1) causes an average reduction in the correlation matrix of 20%. So to simulate data 

with a correlation with Y of 0.3, the input correlation is 0.375. Using a ridge of 0.5 has a 

reduction of 43% on the correlations, so the input correlation (to achieve a correlation of 0.3) 

is 0.526. So, when a large ridge is used, the pairwise correlations are reduced but a higher 

correlation with the outcome can still be simulated. Using a ridge in this situation is 

appropriate when the resulting simulated correlations are stated as target and not the 

correlations before the ridge is applied. Using the ridging, we can also see how the method 

performs as the correlation with Y becomes greater than the pairwise correlations among the 

components of the index.  
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Table 2.1: Effects of a Specific Ridge Values on a Correlation Matrix 

Diagonal Value (1+r) 
Effective multiplier on 
Correlation matrix 

Target Correlation with 
Y Input Correlation with Y 

1 1 0.1 0.100 

  
0.2 0.200 

  
0.3 0.300 

1.05 0.82 0.1 0.122 

  
0.2 0.244 

  
0.3 0.366 

  
0.4 0.488 

1.1 0.8 0.1 0.125 

  
0.2 0.250 

  
0.3 0.375 

  
0.4 0.500 

1.2 0.72 0.1 0.139 

  
0.2 0.278 

  
0.3 0.417 

  
0.4 0.556 

1.3 0.67 0.1 0.149 

  
0.2 0.299 

  
0.3 0.448 

  
0.4 0.597 

1.4 0.61 0.1 0.164 

  
0.2 0.328 

  
0.3 0.492 

  
0.4 0.656 

1.5 0.57 0.1 0.175 

  
0.2 0.351 

  
0.3 0.526 

  
0.4 0.702 

  
0.5 0.877 

 

3.2 Simulation Results: Single Estimation  

 To characterize the weighting procedure, we need to verify two things. First, validity: i.e., 

the number of components assigned weights is appropriate (i.e. the weighting procedure is 

picking up all the important factors). Validity will be defined for a given cutpoint; that is a 

component will be deemed “selected” if its weight is greater than a chosen cutpoint. Second, 
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reliability: i.e., the weights that are assigned are reliable (determined by the variation in the 

weight estimates). We used simulation studies to assess the performance of the weighted quartile 

score method in terms of these two aspects of accuracy, across varying levels of correlation with 

the outcome and degrees of multicollinearity (i.e. pairwise correlation structures), as shown in 

the schematic in Figure 2.3:  

Figure 2.3: Schematic of Simulation Cases 

 

 In the simulations, we based our data on biomonitoring data on phthalate levels in adult 

subjects from the 2007-2008 NHANES cycle. The correlation matrix for the quartile-scored 

phthalate monoesters is given in Figure 1.1. We simulated 1000 studies each with a sample size 

of 2000 observations. We simulated an outcome variable based on the observed distribution of 

HDL in the same population from which the phthalates correlation structure was derived. 

 

3.2.1: Validity of Weights: Single Sample Estimation 

 To determine how well the weighted quartile score performs in terms of validity, we 

began by determining to what extent the weighted quartile score detects important factors. We 
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chose eight of the eleven phthalates to have correlation patterns that cover the schematic in 

Figure 2.3 by varying the correlation between the eight components (namely X1, X2, X4, X5, 

X6, X8, X9, X11) and the outcome and among the eleven components by using different ridge 

values. We defined validity as the number of correct components assigned a weight of at least 

0.05. The results, given in Figure 2.4, indicate that as the pairwise correlations among the 

phthalate monoesters decreases, validity increases. That is, for a given correlation with the 

outcome, as the pairwise correlations decrease, number of components assigned weight tends 

towards the truth (assigning weight to eight of the eleven components). The same is true for the 

correlation with Y: as the correlation with Y increases, the method has higher validity. With low 

correlation with Y and no decrease in the pairwise correlations, the distribution number of 

components assigned weight is centered at 6.5 and ranges from 4-8. As the correlation and the 

ridge increase, the center of the distribution shifts to 8 and the range tightens.  This demonstrates 

that the method performs well when the correlation with the outcome is relatively large 

compared to the pairwise correlations and worse when the correlation with Y is relatively small 

compared to the pairwise correlations. It is promising that in the worst case considered, the 

method is still able to detect all but one of the important components on average. For the 

definition of validity, a cutoff value must be chosen. Here, a cutoff of 0.05 was used, but it is 

likely that for a higher number of components and/or a more complex correlation structure, a 

smaller cutoff value may need to be used. The number of components in the weighted index 

should be considered when determining a cutpoint. To help guide the cutpoint, consider the 

average weight if all components are assigned a weight (i.e. for 20 components the average 

weight would be 0.05, so if there are greater than 20 components a smaller cutpoint should be 

used).  
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Figure 2.4: Distributions for the Number of Components Assigned Weight to Assess Validity; All horizontal axes for Correct 0 to 8 

and 0 to 3 for Incorrect; Sample size for test dataset: 1000 

  Correlation with Y 

Ridge (*)  0.1 0.2 0.3 

1 (1) 

      

1.1 (0.8) 

            

1.2 (0.72) 

            

1.3 (0.67) 
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*Resulting Multiplier on Correlations 

1.4 (0.61) 

            

1.5 (0.57) 
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3.2.2: Reliability of the Weights: Single Sample Estimation 

 After determining that the weighted quartile score estimates weights on an appropriate 

number of components, it was important to determine the reliability of the weights assigned to 

the components. For that reason, we considered two phthalates with high pairwise correlations 

(MOH and MHH, correlation is 0.92). We again used a correlation with Y ranging from 0.1 to 

0.3 and a ridge of 0 to .5 (i.e. pairwise correlation ranges from 0.52 to 0.92) to cover a portion of 

the schematic in Figure 2.3. Shown in Figure 2.5, we found again that the method is improved as 

the correlation between the important factors and the outcome variable becomes relatively larger 

compared to the pairwise correlations. The weights are centered about 0.50 (equal weight on the 

two components) and as the correlations change (i.e. as the correlation with Y increases and the 

pairwise correlation decreases), the reliability increases (i.e. the variance of the distribution of 

the weights becomes small). 
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Figure 2.5: Distribution of Weights Across Varying Pairwise Correlations and Correlations with Y; All Horizontal Axes from 0 to 1 and Vertical from 0 

to 100. 

    Correlation with Outcome   

Ridge (New 
Pairwise 
Correlation for 
MHH, MOH)   

0.1 0.2 0.3 

  MHH MOH MHH MOH MHH MOH 

1 (0.92) 
  

            

1.1 (0.74) 
  

            

1.2 (0.66) 
  

            

1.3(0.62) 
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1.4 (0.56) 
  

            

1.5 (0.52) 
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3.3 Per Sample Estimation Simulation Conclusions 

In a risk analysis setting, it is important to detect the components that are associated with 

the outcome and to exclude those that are unrelated to the outcome. From the simulations, the 

weighted quartile score typically did not place weight on components that are unrelated to the 

outcome (indicated by weight greater than 0.05).The performance of the WQS depended on the 

setting. The results indicate that the correlation between the important components and the 

outcome has a greater effect on the performance of the estimation than the pairwise correlations 

among the components. The schematic from 2.3 has been updated to demonstrate where the 

method performs well (green) and where it tends to break down (red). Because the pairwise 

correlations among components cannot be altered, it is ideal that they will have less of an effect 

on the stability of the method. The correlation with the outcome can be altered by selecting an 

outcome that has a strong (i.e. not trivial) relationship to the components.   

Figure 2.6: Updated Schematic to Indicate Performance of WQS Estimation 

 

 

 



www.manaraa.com

 
 

29 
 

3.4: Simulation Results: Validity and Reliability Across Bootstrap Samples 

  To further evaluate validity and reliability, we performed simulation studies wherein we 

simulated 1000 datasets of sample size 250 with the phthalate correlation structure and eight of 

the eleven phthalates correlated with outcome at varying levels and observed pairwise 

correlations. The WQS index was calculated for each of the 1000 datasets (using the 100 

bootstrap samples for each). For the WQS, validity is based on whether or not the average weight 

for a component (that is correlated with the outcome) is greater than a specified amount 

(depending on number of components and complexity of the correlation pattern). A cutoff of 

0.05 was used to determine whether or not a component had been selected.  

The first setting used, allowed for eight of the eleven components to be correlated with 

the outcome, namely X1, X2, X4, X5, X6, X8, X9, X11. By selecting these components, the 

highest pairwise correlations were excluded, effectively diminishing the effects of the 

multicollinearity. Among the phthalates, X3, X7 and X10 have the highest pairwise correlations 

(ranging from 0.82 to 0.92). The remaining eight phthalates have correlations typically less than 

0.50. The results of this simulation study are given in Figure 2.7. Each histogram represents the 

distribution of the average weight with the average, 5
th

-percentile and the 95
th

 -percentile given 

in the inset.  
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Figure 2.7: Simulated Bootstrap Analyses: Distribution of Average Weights from 1000 

Simulated Bootstrap Analyses (i.e. Average weight from the 100 bootstrap samples from each of 

1000 simulated datasets)- 8 Components Correlated with Outcome at 0.1 level; X3, X7, X10 

NOT correlated with outcome; Observed phthalate correlation structure; sample size 250 

   

   

   

  

 

 

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.05

5th Percentile 0.04

95th Percentile 0.14

Weight for X1

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.13

5th Percentile 0.1

95th Percentile 0.14

Weight for X2

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0

5th Percentile 0

95th Percentile 0

Weight for X3

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.03

5th Percentile 0.02

95th Percentile 0.08

Weight for X4

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.06

5th Percentile 0.06

95th Percentile 0.06

Weight for X5

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.23

5th Percentile 0.19

95th Percentile 0.24

Weight for X6

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0

5th Percentile 0

95th Percentile 0

Weight for X7

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.2

5th Percentile 0.14

95th Percentile 0.2

Weight for X8

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.1

5th Percentile 0.07

95th Percentile 0.1

Weight for X9

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0

5th Percentile 0

95th Percentile 0

Weight for X10

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

P
er

ce
n

t

Mean 0.2

5th Percentile 0.16

95th Percentile 0.2

Weight for X11



www.manaraa.com

 
 

31 
 

 

 The results in 2.7 indicate both the validity and reliability are high. The average weight 

for the three components not correlated with the outcome was 0 for all and the weights for 

components selected as correlated with the outcome were all, on average, greater than 0. The 

reliability was also high as indicated by the lack of variation in the average weights (indicated by 

the “tower-looking” distributions). While the method was able to distinguish the important 

components from those that are not associated with the outcome, the pairwise correlations still 

had an impact on the estimation of the weights.  Without any knowledge of the results, one 

would have likely predicted that the eight components would have equal weights. Because the 

average weight differs across the eight components, there is indication that something is 

affecting the estimation of the weights, likely the pairwise correlations among the eight 

components. From the simulated bootstraps, we see that across all the simulations, the 

components with the lowest average of the bootstrap sample average weights were CNP(X1), 

MBP(X4), MC1(X5), and MIB(X9). Each of these had an average bootstrap sample average of 

less than 0.1 (Note with equal weights on the 8 components, expected weight would be 0.125). 

For these four components, we suspect that the correlations with the remaining four components 

are relatively high and therefore affecting the distribution of the weights.  

 Since there is an indication of the effect of pairwise correlations on both the single 

estimation step and the bootstrap analysis, further simulations were performed to determine the 

extent of the effect of the pairwise correlations on the weighted quantile score approach. For the 

further analyses, we considered four corners from the schematic in Figure 2.3 (shown in Figure 

2.8). We randomly selected three of the eleven components to be unrelated to the outcome. Then 

we altered the correlation with the outcome (between 0.1 and 0.3) and used either no ridge or a 
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ridge of 0.5, which imposed a decrease in the pairwise correlations of 0.43 (i.e. a multiplier of 

0.57 on each of the pairwise correlations, see Table 1.1). This created the four new simulation 

cases (i.e. the four corners). The three components that were randomly chosen to have no 

correlation with the outcome were CNP, COP and MEP.  

Figure 2.8: Four Cases (i.e. Four Corners) For Simulated Bootstrap Analysis 

 

The results for these simulations are given in Figures 2.9-2.12 on the following pages. 

The final distribution in each of the figures is the distribution of the power (i.e. the proportion of 

bootstrap samples whose weights are validated in the validation dataset) across the 1000 

simulated datasets.  In the first case, Figure 2.9 (original pairwise correlations and correlation 

with the outcome of 0.1), the results indicate that there is little distinction between the 

components that should be assigned weight and several of the components that were correlated 

with the outcome (i.e. decreased validity) and that the distributions have more variation than 

those in Figure 2.10 (i.e. decreased reliability). However, the power distribution shows that these 

poor results may just be an indication of the lack of power and lack of information in the data at 

hand. In the second case, where the correlation with the outcome is again 0.1 but the pairwise 

correlations are ridged, we see minimal improvement in validity, reliability, and power (Figure 

2.10). In the third case (Figure 2.11), where the correlation with the outcome for the eight 
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components is increased to 0.3, there is a great increase in validity, reliability and the power. Six 

of the eight components have weight distributions clearly different from zero and two of the 

three that should be zero have distributions almost always at 0. The fourth case (Figure 2.12), 

demonstrated little improvement in validity in case 3, but there is improvement in the reliability 

over case 3 as the distributions seemed to tighten (i.e. decrease variability and increase 

reliability).  

 It is promising to see that the increase in the correlation with the outcome is the change 

that is needed to increase the reliability of the weights along with the power of the method. The 

decrease in the pairwise correlations doesn’t seem to have a strong effect on either the reliability 

of the weights or the power. This shows that the method will perform well despite high pairwise 

correlations among the predictors as long as there is a relatively strong relationship with the 

outcome. 

 These simulations also provide more information about the trends in the approximate 

weights. All simulation cases had equal correlation among all the components that were set to be 

correlated with the outcome, but there were differences between the average weights. The 

simulations suggest that these differences could be explained by the pairwise correlations. That 

is, components with high pairwise correlations seem to have diminished weights, despite having 

the same pairwise correlation with the outcome. For example, ECP (X3), MHH (X7), MOH 

(X10) have high pairwise correlations (0.82-0.92) and have the lowest weights of the eight that 

are simulated to be correlated with the outcome. This is most apparent in Figure 2.12 where the 

reliability in the weights and the power of the analyses are highest. This result means that in 

order to interpret weights, pairwise correlations need to be considered. As the number of 

components and the complexity of the pairwise correlations increase, this will become less and 
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less feasible. In such cases, the index may be interpreted as a whole, rather than individual 

weights.   
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Figure 2.9: Distributions for Weights and Distribution of Power across:  1000 Simulated 

Datasets; 100 Bootstraps; Sample Size 250 for Weight Estimation; X1, X2, X6 NOT Correlated 

with Y; Remaining components 0.1 Correlation with Y 
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Figure 2.10: Distributions for Weights and Distribution of Power across:  1000 Simulated 

Datasets; 100 Bootstraps; Sample Size 250 for Weight Estimation; X1, X2, X6 NOT Correlated 

with Y; Remaining components 0.1 Correlation with Y; Pairwise Correlations Decreased by 43% 

(i.e. ridge 1.5) 
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Figure 2.11: Distributions for Weights and Distribution of Power across:  1000 Simulated 

Datasets; 100 Bootstraps; Sample Size 250 for Weight Estimation; X1, X2, X6 NOT Correlated 

with Y; Remaining components 0.3 Correlation with Y 
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Figure 2.12: Distributions for Weights and Distribution of Power across:  1000 Simulated 

Datasets; 100 Bootstraps; Sample Size 250 for Weight Estimation; X1, X2, X6 NOT Correlated 

with Y; Remaining components 0.3 Correlation with Y; Pairwise Correlations Decreased by 43% 

(i.e. ridge 1.5) 
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3.5: Traditional Methods Comparison 

3.5.1 Ordinary Regression and LASSO Simulations 

As a comparison for the weighted quartile score, we also performed an ordinary 

regression analysis (OR) on simulated data. In the OR simulation, we used the simulated data 

from the case where only one phthalate was correlated with the outcome and that the assumed 

correlation was 0.3. Figure 2.13 contains the distribution of the p-values for each of the eleven 

phthalates using the complete data (i.e. not splitting the data like in the weighted analysis case). 

In these histograms, the red line indicated the 0.05 significance cutoff. That implies that the 

number of cases to the left of the red line represent the percent of time that a given phthalate is 

found to be significant in the model. Each of the eleven phthalates were found to be significant in 

at least 90% of the simulated cases. As anticipated, due to the high correlations, ordinary 

regression is affected by the multicollinearity. The analysis shows little ability to distinguish 

between components correlated with the outcome and those that are not, as a result of the 

complex correlation structure.  
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Figure 2.13: Ordinary Regression Simulation 

    

    

   

 

 

 We also looked at LASSO as a method for comparison. We used Proc GLMSELECT  

which employs the LARS algorithm and considers all possible shrinkage parameters and selects 

the best case. We simulated five cases, all with MHH and MOH correlated with Y at a level of 

0.3, but varied the ridge (i.e. reduced the pairwise correlations) from 0 to 0.5 (i.e from 57% of 

the original correlations to 100% of the original).  We found that across all simulation cases, 

LASSO detected both MHH and MOH correctly in about 80% of simulated cases. However, it 

also selected several other components in each case. In the case with the highest pairwise 

correlation between MHH and MOH, it only selected one about 5% of the cases. As the pairwise 

correlations decreased (i.e. the ridge increased), the distribution of the number of incorrect 

components shift to the left slightly, but it still tended to select five extra components.    
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Figure 2.14 LASSO Simulation Results- LARS Algorithm  

Ridge (multiplier)  Correlation with Y 

(Input correlation) 
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3.5.2 Direct Comparison to LASSO 

 We saw in 3.4 that the weighted quartile score approach has breakdown cases (i.e. where 

the correlation with the outcome is low and the pairwise correlations are high). In a head-to-head 

comparison for Corner 1 (where WQS approach demonstrated lowest power, validity and 

reliability), we simulated 1000 datasets with a sample size of 500, with eight components 

correlated with the outcome (correlation=0.1) and the phthalate correlation structure. We 

performed the LASSO analyses with both the split dataset (i.e. 250 observations) and with the 

complete dataset (i.e. 500 observations). The number of phthalates that should have been 

assigned weight was eight and a single weighted quartile score analysis with a sample size of 250 

was able to detect five. Figure 2.15 presents the histograms of the number of correct and 

incorrect phthalates assigned weight for both a sample size of 250 and 500.  
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Figure 2.15: Number of Components Detected by LASSO Correctly and Incorrectly 

Sample Size Correct Phthalates  Incorrect Phthalates 

N=250 

  

N=500 

  

 

These results indicate that the LASSO technique probably requires additional data and/or a 

higher correlation with the outcome to perform since in a majority of the cases, no components 

were detected. It is clear that this corner is also a breakdown for LASSO, but to a much greater 

extent than the WQS.  

 When using LASSO, additional criterion can be used along with the shrinkage. For 

example, Mallow’s Cp criterion can be added to the optimization to balance out under and 

overfitting. To determine if this additional criterion, or any other criterion available, could offer 

improvements to the LASSO method, we performed further simulations in Chapter 3.  
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Conclusions 

 In a real data case, we may be presented with a small sample size and higher pairwise 

correlations among the predictors. Through simulations, we have seen the following for WQS 

approach:  

 The weighted quantile score approach has increased stability over ordinary regression 

 A single analysis demonstrates lower validity; by adding a bootstrap analysis, validity is 

improved (See Section 3.4 in Chapter 3) 

 The weighted quantile score approach on average does not place weight on components 

with no correlation with the outcome (high validity) 

 Components with high pairwise correlations are assigned relatively lower weights 

 There is higher reliability in weights that have lower pairwise correlations  

 Increasing sample size is associated with a higher validity and reliability for WQS 

From the limited LASSO simulations, we have seen the following: 

 

 LASSO had low validity, as it tended to indicate many components that should not have 

been selected (Figure 2.14). 

 LASSO had lower power in Corner 1 (Figure 2.15) 

 

Overall, the weighted quantile score method is good for a risk analysis setting because it 

maintains validity and reliability, with improvements as the correlation with the outcome 

increases.  Even in the breakdown case, the bootstrap analysis will indicate on average the “bad 

actors” more appropriately than other methods at hand (LASSO or regression). When 

interpreting the weights, one should keep in mind both the pairwise correlations among the 

components and the correlation with the outcome variable. If the pairwise correlations are high 

relative to the correlation with the outcome, there may be a “breakdown case.” In that setting, the 

weights should be considered in conjunction with the pairwise correlations a given component 

has with other components. If a component has a minimal weight (i.e. less than 0.05 or 0.01 if a 

large number of components or complex correlation structure) and is highly correlated with other 

components assigned minimal weight, the two are likely important, but have smaller weights as a 
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result of their high pairwise correlation. From this type of analysis, we are able to detect 

components that are associated with a given health outcome and assess the total body burden 

they impose on an individual. Figure 2.6 demonstrates the areas where the WQS performs best 

(green area) and an analyst should be aware of his or her placement on this spectrum.  
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III. Appendix: Supplementary Material to Chapter 2  

Introduction 

 This chapter provides supplementary material to Chapter Two, primarily the results of 

further simulations with different correlation structures and sample sizes. These simulations 

further demonstrate the validity and reliability of the weighted quantile score under different 

conditions. Each figure contains the simulation conditions and a brief summary and 

interpretation of the results. Overall, the simulations show that in ideal settings (high correlation 

with outcome, lower pairwise correlations, and large sample size), the method performs with 

high validity and reliability. They also show that in settings with more complex correlation 

structures (large number of components correlated with outcome, high pairwise correlations, low 

correlation with outcome, etc) that the method does have lower validity and reliability, notably 

measured through an increased false negative rate. We demonstrated in Chapter 2 that a 

bootstrap analysis lessens these effects, and that the method still outperforms LASSO and 

regression in the same cases. Also included is a demonstration of LASSO with other criterion. 

The final component of this chapter is a demonstration of the weight quantile score and the 

improvement that the addition of a bootstrap provides.  
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3.1 Various Simulations for Weighted Quantile Score with Phthalate Correlation Structure 

from Figure 1.1 in Chapter 2  

3.1: MHH (X7) Correlated with Y (Corr=0.3), Sample Size 1000, Observed Phthalate 

Correlation Structure (Ch 2 Figure 1.1), No Other components Correlated with Outcome 
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This simulation was done to determine if given a high pairwise correlation between two 

components (X7 and X10 have correlation of 0.92), if only one is correlated with the outcome, 

could the WQS distinguish between the two components? Because it is clear that the weight is 

solely placed on X7, the method was able to distinguish which component is correlated with the 

outcome and which was not.  It also does not place more than marginal weight on any other 

components. 
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3.2 MHH (X7), MOH (X10) Correlated with Y (Corr=0.3), Pairwise Correlation=0.92, Sample 

Size 1000, Horizontal Axis is 0 to 1 and Vertical Axis 0 to 100 for All Histograms 
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This simulation was done to determine if given a high pairwise correlation between two 

components (X7 and X10 have correlation of 0.92), if both are correlated with the outcome, 

could the WQS detect both components or just one. Because it is clear that the weight is placed 

evenly on X7 and X10, the method was able to detect that both are related to the outcome. It also 

does not place more than marginal weight on any other components.  
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3.3 All Six High Molecular Weight Phthalates Correlated with Y of 0.5; Observed Phthalate 

Correlation (Figure 1.1 in Ch 2); Note: Highest pairwise correlations occur between high 

molecular weight phthalates; Final histogram is the distribution of the number of weights greater 

than 0.05; Components correlated with outcome were: X1, X2, X3, X7, X8, X10 and are 

indicated in the table with shaded background.  
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This simulation shows that the method occasionally missed one of the size components 

despite the high correlation with the outcome. However, a “miss” was defined as a weight less 

than 0.05 not a true 0 and the bootstrap analysis was not performed in this case. Additionally, the 

distribution of X10, the component that was frequently “missed” still had a distribution that was 

different from the remaining five components. The components that had no correlation(X4, X5, 

X6, X9, X11) with the outcome in the simulation had near perfect distribution of 0 weight. The 

pairwise correlations between X10 and X3 and X7 are 0.85 and 0.92. As shown in Ch 2, 

components with high pairwise correlations can have lower estimated weights. So the near zero 

weights for X10 do not indicate a lack of importance, but high multicollinearity.  



www.manaraa.com

 
 

53 
 

3.2 Simulated Bootstrap Analyses For Breakdown Cases with Increased Sample Size 

3.4 Distributions for Weights and Distribution of Power across: 1000 Simulated Datasets; 100 

Bootstraps; Sample Size 500 for Weight Estimation; X1, X2, X6 NOT Correlated with Y; 

Remaining components 0.1 Correlation with Y; No Ridge- Pairwise Correlations from Figure 1.1 

in Ch 2. 
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These results show improvement over Figure 4.5 (with only change the increased sample 

size). The weights for X1, X2 and X6, which should be zero, decrease for X1 and X2 by about 

half (0.04 to 0.02). The average weight for X6 actually increased, but the distribution tended 

much closer to 0- therefore having a lower false positive rate. The weights for variables that were 

assigned smaller weight than expected (X7, X10) also increased from 0.02 to 0.05 and 0.03 to 

0.05 respectively. While this is still a breakdown case due to the high pairwise correlations and 

low correlations with the outcome, the increased sample size did marginally improve the validity 

and reliability.  
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3.5. Distributions for Weights and Distribution of Power across:  1000 Simulated Datasets; 100 

Bootstraps; Sample Size 500 for Weight Estimation; X1, X2, X6 NOT Correlated with Y; 

Remaining components 0.1 Correlation with Y; Ridge 1.5- Pairwise Correlations from Figure 1.1 

Reduced by 43% 
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These results show improvement over Figure 3.4 (with only change the ridge of 1.5). The 

average weights for X1 and X2 are the same, but the range has decreased (i.e. reliability is 

higher). For the simulation in Figure 3.4, the 95
th

 percentile for X1 was more than twice what it 

was in Figure 3.4. For X6, which also should have been estimated 0, the estimate was 0.06 with a 

95
th

 percentile of 0.24, versus 0.04 and 0.11 respectively in this simulation case. This simulation 

case also has a much lower false negative rate than Figure 3.4. For many of the components in 

Figure 3.4, the false negative rate is at least 20%, but in this case it is below 10% for most and 

very near zero for many.  
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3.3 Comparison to LASSO 

3.6 LASSO Results: No Selection Criterion; LARS Algorithm 

Simulation Setting Number of Correct Number of Incorrect 

X3, X7 Correlated with Y, 

Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2. 

 

Number Correct Should be: 2  

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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3.7 ADJRSQ Adjusted R-square statistic 

Simulation Setting Number of Correct  Number of Incorrect  

X3, X7 Correlated with Y, 

Correlation=0.3; All remaining 

components not correlated 

with outcome; Observed 

correlation from Figure 1.1 Ch 

2.  

 

Number Correct Should be: 2 

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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3.8 AIC Akaike information criterion 

Simulation Setting Number of Correct  Number of Incorrect  

X3, X7 Correlated with Y, 

Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 2 

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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3.9  AICC Corrected Akaike information criterion 

Simulation Setting Number of Correct  Number of Incorrect  

X3, X7 Correlated with Y, 

Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 2 

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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3.10 CV Predicted residual sum of square with -fold cross validation 

Simulation Setting Number of Correct  Number of Incorrect  

X3, X7 Correlated with Y, 

Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 2 

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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3.11 PRESS Predicted residual sum of squares 

Simulation Setting Number of Correct  Number of Incorrect 

X3, X7 Correlated with Y, 

Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2. 

 

Number Correct Should be: 2  

  

X3, X7, X10 Correlated with 

Y, Correlation=0.3; All 

remaining components not 

correlated with outcome; 

Observed correlation from 

Figure 1.1 Ch 2.  

 

Number Correct Should be: 3 

  

All Six High Molecular 

Weight Phthalates Correlated 

with Y of 0.5; Observed 

Phthalate Correlation (Figure 

1.1 in Ch 2); Note: Highest 

pairwise correlations occur 

between high molecular 

weight phthalates; 

Components correlated with 

outcome were: X1, X2, X3, 

X7, X8, X10  

 

Number Correct Should be: 6 
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 The LASSO simulations all essentially demonstrate a similar conclusion: while the 

method is able to detect the “right” components a majority of the time, it tends to pick up 

additional components across the simulation cases.  There are criterion that tend to perform 

better than others, but in the cases shown, it seems as though the LARS algorithm is likely the 

best option since the distribution of incorrect components is more normally distributed than it is 

left skewed, which is how the other criterions tend to perform.  
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3.4 Applying to Real Data: Demonstration of Development of WQS  

3.4.1 Problems in Real data 

 As shown in Chapter 2, the weighted quartile score performs best in cases with higher 

correlations with the outcome relative to the pairwise correlations of the components. But in a 

real data case, we might be presented with limited sample size and pairwise correlations among 

the predictors that are larger than the correlations with the outcome. In that case, there is reason 

to have concern about the performance of the weighted quartile score. In this breakdown case, 

we propose the use of bootstrapping to improve the results from a single analysis.  

3.4.2 Phthalate Breakdown Case Demonstration 

 We demonstrate the application of the bootstrap analysis to the case with a total sample 

size of 500 (i.e. 250 for the estimation of the weights and 250 for the validation step). We 

assume again that there are eight components correlated with the outcome and that correlation is 

set to 0.1 and the pairwise correlations are as observed in the NHANES dataset which are listed 

in Figure 1.1. In the simulated sample, the weighted quartile score approach assigned nonzero 

weight to five of the pre-specified eight components. These weights are given in Table 3.1, 

where the components that should have been assigned weight are indicated with an asterisk.  
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Table 3.1: Results from Breakdown Case with Phthalates with Sample Size of 250 and 8 

Phthalates Marked with Asterisk Correlated with Y at 0.1 Level 

Phthalate Weight 

CNP 0.19* 

COP 0.09* 

ECP 0.00  

MBP 0.00* 

MC1 0.00* 

MEP 0.16* 

MHH 0.00   

MHP 0.38* 

MIB 0.00* 

MOH 0.00 

MZP 0.17* 

 

The index created from these weights was validated in the second half of the dataset and found to 

be significant (estimate: 4.58; p-value= 0.002). So while the model is significant and the 

approach detected five of the eight phthalates, we would like for it to be able to detect all eight 

phthalates and to be validated as significant in the validation dataset. 

 The results show that the method was sensitive (i.e. it did not assign weights to 

components that are not associated with the outcome) but that it was not as specific (i.e. it missed 

components that should have been indicated). We propose that by taking bootstrap simulations 

from the original data, we will be able to improve specificity and detect the components that are 
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missed in a single analysis. We took 1000 random bootstrap samples from the single simulated 

dataset and estimated the weights using the Trust Region algorithm for each sample. The 

distributions of the weights are given in Figure 3.12; the average weight is given in the inset of 

each histogram.  
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Figure 3.12: Distribution of Weights from 1000 Bootstrap Samples of size 250 from Data from 

Table 3.1 
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When the average bootstrap sample weight is calculated, there is nonzero value placed on all 

eight of the pre-specified components. We also applied this average weighted quartile score to 

the validation dataset and found that it was significant (estimate: 6.80; p-value<0.0001).  
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IV. Application of Method: Environmental Chemicals, Non-Chemical 

Stressors and Liver Health 

 

1. Introduction 

 As the rate of obesity continues to reach staggering levels, diseases that are associated 

with obesity are also on the rise. One such disease is non-alcoholic fatty liver disease (NAFLD) 

which is also referred to as non-alcoholic steatohepatitis (NASH) in more severe cases. NAFLD 

and NASH are characterized by fatty deposits in the liver along with inflamation and damage 

(NDDIC). NAFLD is the most common liver disease in the United States and the trend is 

followed worldwide, to an extent that could be deemed epidemic (Cave, 2007). It is believed that 

NASH/NAFLD are associated with increased visceral adioposity (large waist circumference) 

plus insulin resistance (Krawczyk, et al 2010). These conditions are both known to be caused by 

obesity and poor nutrition. In addition, oxidative stress has been implicated as a cause of 

NASH/NAFLD (Krawczyk, et al 2010). The most common biomarker for NAFLD is elevated 

transamines, especially alanine amino-transferase (ALT) (Cave, 2007). Environmental chemicals 

have been linnked to an increase in ALT and/or NASH/NAFLD including occupational exposure 

to petrochemicals (Cave, 2007) and polychlorinated biphenyls (PCBs), dioxins, furans and heavy 

metals (Christensen, 2013).  

In risk assesment focus was shifted to such “non-chemical stressors” after the National 

Research Council’s report in 2009 recommended the consideration of both chemical and non-

chemical stressors on public health (Lewis, 2011). Common non-chemical stressors include low 

socio-economic status, race/ethnicity, obesity, and occupational and community-related 

exposures. These non-chemical stressors are also referred to as “vulnerability factors” (Lewis, 

2011). Because NASH/NAFLD, and fatty liver disease in general, are highly influenced by 
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obesity, poor nutritional status could likely be a non-chemical stressor for NASH/NAFLD. In 

this paper, we will further investigate the effect of the environmental chemicals based on the 

methods from Carrico, et al (2013) and investigate a nutritional index for non-chemical stressors.  

A positive relationship (i.e. increase in ALT) between ALT and the nutrition index we consider 

representative of non-chemical nutritional stressors. If the relationship is negative (i.e. decrease 

in ALT), then the index places weight on the nutritional components that are non-stressors on 

liver functioning.  

2. Methods 

2.1  Description of Data 

 The NHANES studies are a series of studies conducted by the CDC to assess the health 

and nutritional status of a representative sample from the US population, including both adults 

and children (CDC). The data are publically available on the CDC website and contain data 

collected from a personal interview and a physical examination which includes the collection of 

biological specimens (blood and urine). The 2003-2004 cycle is the most recent cycle that 

contains blood serum data on polychlorinated biphenyls (PCBs), dioxins, furans and heavy 

metals. Data from both the interview and the physical examination were used in this analysis. 

From the interview, data from the two 24-hour total dietary recalls along with demographic data 

(age, gender, income to poverty ratio, body mass index (BMI), and race/ethnicity) were used. 

Data on blood serum levels of coplanar PCBs, noncoplanar PCBs, dioxins and furans, and heavy 

metals were considered. In total, 34 PCBs, dioxins and furans; 3 heavy metals; and 56 nutrients 

were used in the analysis and are listed in Table 4.1a-b. Each nutrient was summed across the 

two days, adjusted for total caloric intake, and then scored into quartiles. Lipid-adjusted blood 

serum analyte levels for PCBs, dioxins, furans and heavy metals were also scored into quartiles.   
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The data used are a subsample of 928 subjects from the 2003-2004 NHANES dataset, 

after subjects with missing data for the environmental chemicals or the dietary recall are 

excluded. In addition, following Christensen, et al (2013), subjects with history or indication of 

liver disease, indication of Hepititis B, Hepititis C, or high alcohol intake are excluded from the 

analysis. 
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Table 4.1a: Analytes Considered in Analyses 

  

Table 4.1b: Dietary Nutrients Considered in Analyses  
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The outcome variable of interest was serum alanine amino-transferase (ALT) level, 

which is an indication of overall liver health, and a preliminary test for fatty liver disease. A high 

level of ALT is indicative of poor liver health. The distribution of ALT in the dataset was right 

skewed and therefore the outcome variable was modeled as the natural log of ALT (Log(ALT)), 

which was normally distributed.  

 Along with controlling for the analytes and nutrients, demographic variables were also 

considered in the analyses. These included gender (male, female), age at time of interview (in 

years), race/ethnicity (dichotomized to Non-Hispanic White and Others), poverty status (ratio of 

family income to poverty threshold), and BMI. For poverty status, any ratio greater than or equal 

to five was given the maximum value of 5.  

 For the analyses, the complete dataset was randomly divided into two groups: one was 

used to estimate the weights (referred to as the “test” dataset) and one was used to validate 

(referred to as the “validation” dataset) these results. Chapter 2 extended  the weighted quantile 

score approach used by Christensen, et al to include a bootstrap analysis. Carrico, et al 

demonstrated improved accuracy (in terms of validity and reliability) by defining the weighted 

score as that formed by the average bootstrap weights. Therefore, the test dataset was used to 

generate 1000 bootstrap samples, from which an “environmental chemical score” (ECS) and a 

“nutritional stressor score” (NSS) were determined by the average weights. These indices were 

validated in the single validation dataset. Details are provided in Section 2.2.  

2.2 Preliminary Statistical Analyses 

 All analyses were performed in SAS 9.2. Prior to the beginning of the analysis, some 

preliminary checks on the data were performed. Pairwise correlations between the PCBs, 

dioxins, furans, and heavy metals and the dietary nutrients were calculated in order to 
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demonstrate the complex correlation structure, and the resulting multicollinearity problem. The 

distribution of the outcome variable, log(ALT), was also checked to insure it was normally 

distributed.  

Prior to estimating the weights, the core model was determined. Covariates of interest 

included age (in years), gender (male/female), a binary race variable (Non-Hispanic White vs 

Others), BMI (contiuous), and Poverty:Income ratio (continuous; all ratios greater than 5 scored 

as 5). All cotinuous variables were checked to determine if higher order terms needed to be 

included in the model.  

2.3 Weighted Quartile Scores 

 Our objective is the formation of a weighted index for the analytes, ECS,  and the dietary 

nutrients, NSS, that maximizes the likelihood for a multiple regression model predicting the 

mean(µ) of Log(ALT). Following Carrico, et al (2013), ECS and NSS were calculated using the 

average weights from the 1000 bootstrap samples where the sample weights were significant. 

Due to the large number of components in both indices, ECS and NSS were estimated separately. 

The unknown parameters were estimated in each bootstrap sample:  
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The covaraites of interest (age, gender, race/ethnicity, BMI, and poverty index) are accounted for 

in the vector z with corresponding parameter in vector φ. The common parameters are not 

constrained to be equal for all models (i.e. 0β  is estimated for each model individually and 

despite notation is not assumed to be equal across all models; the same is true for φ, 1β  and 2β ). 

Using the weights from the bootstrap samples that are associated with a significant 
1β or 

2β in each bootstrap test dataset, ECS and NSS are calculated as:  
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The models in 2.3 are then estimated and tested in the validation dataset. For clarification, the 

weights from each bootstrap sample are validated back in the bootstrap sample and the final 

average boostrap weights are validated in the single validation dataset.    
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When 1β  in 2.3a and 2β  in 2.3b are significant then model 2.3d is fit. When the interaction term 

in 2.3d is not significant then the final model, 2.3c, is estimated. If 2.3d has a significant 

interaction term, 2.3c is not fit. Parameters are not constrained to be equal for all models (i.e. 0β  
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is estimated for each model individually and despite notation is not assumed to be equal across 

all models; the same is true for φ, 1β  and 2β ).  

Results 

3.1 Preliminary Results 

 The data were randomly split into two groups in order to have a test and a validation 

dataset. The test portion of the data had a resulting sample size of 464, with the remaining 464 

observations allocated to the validation dataset. The two subsets were compared across the 

covariates and the outcome. There were no significant differences between the test and the 

validation dataset.  

Table 4.2: Comparison of Test and Validation Datasets for Covariates and Outcome 

Variable Test Validate P-value 

Log(ALT) (Mean, SD) 2.98 0.41 2.94 0.36 0.67 

Age (Mean, SD) 38.03 24.00 35.96 24.15 0.85 

Gender (%Female) 55.2% 51.9% 0.32 

Race/Ethnicity (%White) 55.6% 57.8% 0.51 

Poverty:Income Ratio (Mean, SD) 2.34 1.55 2.38 1.59 0.16 

BMI (Mean, SD) 27.01 6.84 26.61 6.8 0.08 

 



www.manaraa.com

 
 

77 
 

Because the analytes rarely occur as single chemicals, isolated from other analytes, there 

is an inherrent correlation among them, and similarily for the nutrients. The correlation patterns 

are summarized through the histograms of correlations in Figure 4.1.  More complex higher 

degree relationships may still be present and are not indicated by pairwise correlations (Kutner, 

2005).  

Figure 4.1: Correlations Among Environmental Chemicals and Nutrients (NOTE: Only those 

significantly different from zero are displayed. 100/666(15%) were nonsignificant for Chemicals 

and 386/1596(24%) for nutrients) 

 

The histograms in Figure 4.1 show the complexity of the correlations among these two 

groups of components. The average absolute correlation (i.e. disregarding sign and only counting 

those significantly different from zero) for the chemicals is 0.48 with a range of 0.07 to 0.96. For 

the nutrients the average absolute correlation is 0.25, with a range of 0.06 to 0.97. Among the 

analytes and the dietary nutrients, there are logical explanations for both the high and low 

correlation values. Among the chemicals, the pairwise correlations among the co-planar PCBs 

are higher than those between a co-planar and a noncoplanor PCB. Figure 4.2 contains the 

pairwise correlations for dioxin-like and non-dioxin-like components, and comparing to Figure 
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4.1, the medium correlations (those around 0.4) are those that are missing. This implies that the 

pairwise correlations for a given dioxin-like PCB and a given non-dioxin-like PCB are in that 

low to medium range.  

Figure 4.2: Distributions of Pairwise Correlations for Dioxin-Like and Non-Dioxin-Like 

  

Similarly there are pairs of vitamins and minerals that occur together commonly and 

therefore have higher correlations. The set of B-vitamins (thiamin, riboflavin, niacin, folate, B6, 

B12) also have high pairwise correlations (all significantly different from 0 and most greater than 

0.4). Low correlations can also be explained for the nutrients. For example, Vitamin C is 

primarily found in citrus fruits and B12 primarily comes from animal sources (meat, fish, eggs, 

milk); the two had an observed correlation of 0.02 which was not significantly different from 0. 

These relationships contribute to the complex correlation structure among the analytes 

and the nutrients. Rather than reduce the dimensionality by considering only one chemical and 

one nutrient, our proposed weighted quartile score approach reduces the dimensionality without 

over simplifying the relationship between environmental chemicals, nutrients, and ALT.  

Upon investigation of the continuous covariates, there was indication of a quadratic 

relationship between age and ALT. Therefore, the core model included the following covariates: 
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age (in decades), age
2 

(with age in decades), gender, a binary race variable (Non-Hispanic White 

vs Others), BMI, and Poverty:Income ratio. The results of the core model analysis are given in 

Table 4.3 and a plot of age vs ALT is given in Figure 4.3. Although Poverty:Income ratio was 

not statistically significant, it was left in the model based on its importance in the literature 

(Christensen 2013, Cave 2010).  No other continuous covariates had a quadratic or other higher 

order relationship with ALT.  

Table 4.3: Core Model Assessment 

*Age in decades 

Figure 4.3: Plot of Age vs ALT to Demonstrate Quadratic relationship 

 

 

 

Parameter Estimate 
Standard 

Error 
Wald 95% Confidence 

Limits 
Wald Chi-

Square 
P-

Value 

Intercept 2.47 0.074 2.262 2.554 1046.41 <.001 
Age 0.241 0.037 0.168 0.314 41.80 <.001 
Age*Age -0.024 0.004 -0.032 -0.016 35.76 <.001 
Race/Ethnicity (Other vs NH White) 0.067 0.035 -0.001 0.135 3.69 0.055 
RIAGENDR (Female vs. Male) -0.218 0.031 -0.280 -0.156 48.09 <.001 
Poverty:Income Ratio 0.004 0.011 -0.017 0.025 0.15 0.702 
BMI 0.008 0.003 0.003 0.013 8.85 0.003 
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3.2 Weighted Index for Environmental Chemicals Score (ECS) 

 Following the methods of Carrico, et al, we performed a bootstrap analysis to estimate 

average weights to define ECS. We took 1000 bootstrap samples of size 464 from the test 

dataset. The weights from each bootstrap were validated by fitting the model in 2.1 in each 

bootstrap sample. That is, the weights were estimated from the bootstrap sample data then the 

weights were used to construct the index. The weights were deemed significant if B1 was found 

to be significantly different from zero. The bootstrap sample weights were significant in 901 (of 

1000) samples. The average weights from these samples were calculated, used to define ECS, 

and are given in Table 4.4. Those in bold have weights greater than 0.05. 

Table 4.4 Average Bootstrap Weights for Environmental Chemicals 

Dioxin-like compounds  Non-dioxin-like PCBs   Metals    

   PCB 28 0.019    PCB 44 0.000    PCB 153 0.001    Cadmium 0.008 

   PCB 66 0.002    PCB 49 0.002    PCB 170 0.000    Lead 0.005 

   PCB 74 0.000    PCB 52 0.026    PCB 177 0.002    Mercury 0.106 

   PCB 105 0.001    PCB 87 0.017    PCB 178 0.002 

 

  

   PCB 118 0.002    PCB 99 0.012    PCB 180 0.003 

 

  

   PCB 156 0.001    PCB 101 0.128    PCB 183 0.010 

 

  

  1,2,3, 6,7,8-HXCDD 0.001    PCB 110 0.016    PCB 187 0.007 

 

  

  1,2,3,4,6,7,8-HPCDD 0.420    PCB 138 0.000    PCB 194 0.005 

 

  

  1,2,3,4,6,7,8,9-OCDD 0.022    PCB 146 0.001    PCB 196 0.002 

 

  

  1,2,3,4,6,7,8-HPCDF 0.000    PCB 149 0.000    PCB 206 0.002 

 

  

  3,3',4,4',5-PNCB 0.173    PCB 151 0.004    PCB 209 0.001 

 

  

Dioxin-Like Total:  0.641  Non-Dioxin-Like Total: 0.241 
Metals 
Total:  

0.119 

 

A majority of weight is placed on the dioxin-like compounds (64%).  A total of 24% of the 

weight was on non-dioxin-like components, with just under 13% of the weight placed on PCB 

101, and no other components with weight greater than 0.05.  The three metals accounted for 

12% of the weight, with just under 11% attributed to mercury. The two components with the 

highest weight are 1,2,3,4,6,7,8-HPCDD and  3,3',4,4',5-PNCB. Using the average weights in 
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Table 4.4 to define ECS, ECS was significant in the validation dataset; results are given in Table 

4.5. 

Table 4.5 Model Results for Average Bootstrap ECS  

Parameter Estimate Standard 
Error 

Wald 95% 
Confidence 

Limits 

Wald Pvalue 

Intercept 2.382 0.074 2.236 2.527 1030.91 <.001 

ECS 0.103 0.034 0.037 0.169 9.40 0.002 

Age 0.185 0.041 0.105 0.266 20.37 <.001 

Age*Age -0.021 0.004 -0.029 -0.013 25.31 <.001 

Race (Others vs NH White) 0.086 0.035 0.017 0.154 5.99 0.014 

Gender (Female vs Male) -0.217 0.031 -0.278 -0.156 48.64 <.001 

Poverty:Income Ratio -0.001 0.011 -0.021 0.020 0.00 0.956 

BMI 0.008 0.003 0.003 0.013 10.12 0.002 

*Age in decades 

These results indicate that for every one unit in the ECS, there is an average increase in 

log(ALT) of 0.10, or an increase in mean ALT of 11% (i.e. e
0.10

=1.11). In terms of the 

covariates, Non-hispanic whites are associated with a decrease in ALT over other races; Males 

are associated with an increase in ALT over Females. There was a quadratic affect for age which 

indicates that ALT increases with age until a certain point and then it begins to decrease again. 

There was no significant increase in ALT based on poverty:income ratio. Individuals with higher 

BMI were also associated with a modest increase in ALT. 

3.3  Weighted Index for Nutrient Stressor Score (NSS) 

In a similar manner, the 1000 bootstrap samples were used to estimate the average 

weights to define NSS. The average from the 1000 weights that were significant in their sample 

replicates are given in Table 4.6 (those greater than 0.05 are bolded in the table) and the 

parameter estimates for the model are given in Table 4.7.  Since the estimate for NSS is positive, 

the weights indicate nutrients identified as non-chemical stressors. The vitamins and minerals 
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accounted for 37% of the total weights, with most weights less than 0.05, and three right around 

0.05. The set of all types of fats accounted for 29% of the index with highest weight on MFA 

22:1 (Docosenoic; an Omega-9 fatty acid). The remaining 33% of the weight was placed on five 

of the other seven components including: carbohydrates, fiber, protein and sugar.  

Table 4.6 Nutrient Weights from Bootstrap Analysis 

Vitamins/Minerals Weight Fats Weight  Others Weight 

Vitamin E 0.002 Total Fat  0.000 Protein  0.034 

Vitamin A 0.006 Total Saturated Fatty Acids (SFA)  0.028 Carbohydrates  0.098 

Alpha Carotene 0.022 SFA 4:0 (Butanoic) 0.012 Total Sugars  0.078 

Beta Carotene 0.041 SFA 6:0 (Hexanoic)  0.004 Dietary Fiber  0.082 

Beta Cryptoxanthin 0.024 SFA 8:0 (Octanoic)  0.000 Sodium 0.015 

Lycopene 0.022 SFA 10:0 (Decanoic)  0.002 Caffeine 0.018 

Lutein+zeaxanthin 0.009 SFA 12:0 (Dodecanoic)  0.001 Theobromine 0.008 

Thiamin 0.026 SFA 14:0 (Tetradecanoic)  0.000 

 

  

Riboflavin 0.000 SFA 16:0 (Hexadecanoic) 0.012 

 

  

Niacin 0.003 SFA 18:0 (Octadecanoic)  0.002 

 

  

Vitamin B6 0.001 Total Monounsaturated Fatty Acids (MFA) 0.000 

 

  

Folate 0.002 MFA 16:1 (Hexadecenoic) 0.006 

 

  

Folic Acid 0.003 MFA 18:1 (Octadecenoic)  0.018 

 

  

Food Folate 0.055 MFA 20:1 (Eicosenoic)  0.038 

 

  

Vitamin B12 0.002 MFA 22:1 (Docosenoic)  0.060 

 

  

Vitamin C 0.014 Total Polyunsaturated Fatty Acids (PFA)  0.003 

 

  

Vitamin K  0.008 PFA 18:2 (Octadecadienoic)  0.011 

 

  

Calcium 0.004 PFA 18:3 (Octadecatrienoic)  0.004 

 

  

Phosphorus 0.050 PFA 20:4 (Eicosatetraenoic)  0.006 

 

  

Magnesium 0.003 PFA 20:5 (Eicosapentaenoic)  0.030 

 

  

Iron 0.001 PFA 22:5 (Docosapentaenoic)  0.001 

 

  

Zinc 0.001 PFA 22:6 (Docosahexaenoic)  0.051 

 

  

Copper 0.051 

 
 

 

  

Potassium 0.002   
 

  

Selenium 0.022 

 
  

  

Vit/Min Total:  0.37  Fats total:  0.29  Others Total: 0.33 
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Table 4.7: Model Estimation with Average Bootstrap Weights for Nutrient Non-Chemical 

Stressors 

Parameter Estimate Standard 
Error 

Wald 95% Confidence 
Limits 

Wald Pvalue 

Intercept 2.326 0.079 2.172 2.481 868.29 <.001 

NSS 0.123 0.044 0.037 0.210 7.79 0.005 

Age 0.206 0.032 0.143 0.270 40.73 <.001 

Age*Age -0.022 0.003 -0.029 -0.015 40.57 <.001 

Race (Others vs NH White) 0.059 0.029 0.001 0.116 4.00 0.045 

Gender (Female vs Male) -0.248 0.026 -0.299 -0.197 89.64 <.001 

Poverty:Income Ratio 0.003 0.009 -0.015 0.020 0.08 0.774 

BMI 0.008 0.002 0.004 0.012 13.54 <.001 

*Age in decades 

The NSS was significant in the validation dataset. Based on these results, a one unit 

increase in NSS is associated with a 0.12 increase in mean log(ALT), or 13% increase in mean 

ALT. Again age had a significant quadratic relationship with ALT; females were associated with 

a lower ALT; BMI was associated with an increase in ALT; Poverty:income ratio was not 

significant. In this model, Whites were associated with a decrease in ALT as compared to other 

races. In the model with ECS, this relationship was opposite, however it was not statistically 

significant in the prior model.  

3.4: Joint Model for Chemicals and Nutrients 

Using ECS and NSS, we fit the model in  2.3d and found that the interaction term was not 

statistically significant (p-value=0.32). Following the methods, the model in 2.3c was used as the 

final model. The results are given in Figure 4.4, along with a figure of the predicted mean ALT 

at the average level of the covariates. The significance and direction of the covariates are similar 

to the covariates in the previous two models. Both ECS and NSS are positive. ECS was 

significant (p=0.003) and NSS was marginally significant (p-value=0.069) in the independent 
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validation dataset. From the figure it can be seen that the highest levels of ALT are predicted for 

individuals with high levels of ECS and high NSS.  

Figure 4.4: Model Estimation With Chemical and Nutrient Index and Predicted Mean ALT 

for ECS and NSS at Average Levels for BMI, Gender, Race (binary), PIR, and Age 

 

Discussion 

4.1 Implication of Indices 

Considering ECS, a majority of the weights were assigned to the dioxin-like chemicals 

(dioxins, furans and coplanar PCBs) and the heavy metals, with almost half of the total weight 

assigned to 1,2,3,4,6,7,8-HPCDD.  Cave, et al (2010) stated that coplanar PCBs and mercury 

both concentrate primarily within the liver, while noncoplanar PCBs concentrate in the adipose 

tissue which could be an explanation for their associations with an increase in ALT (Klein 

1972; Mudipalli 2007; National Toxicology Program (NTP) 2006). If coplanar PCBs and 

Parameter Estimate Standard 
Error 

Wald Pr > ChiSq 

Intercept 2.270 0.096 560.04 <.001 

ECS 0.101 0.034 9.03 0.003 

NSS 0.103 0.057 3.31 0.069 

Age 0.164 0.043 14.75 <.001 

Age*Age -0.019 0.004 20.57 <.001 

Race (Others 
vs NH White) 0.081 0.035 5.42 0.020 

Gender 
(Female vs 
Male) 

-0.223 0.031 51.10 <.001 

Poverty:Income 
Ratio -0.002 0.011 0.03 0.862 

BMI 0.009 0.003 11.48 0.001 

*Age in decades 
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002193/#b27-ehp-118-1735
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002193/#b27-ehp-118-1735
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002193/#b36-ehp-118-1735
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002193/#b40-ehp-118-1735
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mercury are concentrated within the liver it is likely that they could cause greater stress. 

Additionally, in animal studies, male mice were exposed to drinking water with a mixture of 

mercury, lead, cadmium and copper saw an increase in ALT (Al-Attar, 2011).  

Considering NSS, since all components were adjusted to total caloric intake, the high 

weight on a component can be interpretted as a association between ALT and a high percentage 

of calories coming from a given source (i.e. for caffeine if a high percentage of calories come 

from drinks with high caffeine content are indicative of increase in ALT). Carbohydrates, sugars 

and fiber were the main components assigned weights greater than 0.05. York (2009) defines 

NAFLD as a two-hit process, the first of which likely being caused by insulin resistance. 

Because sugars and carbohydrates are converted to glucose in the body and most individuals 

with fatty liver disease have insulin resistance (York 2009), having a diet high in calories from 

carbohydrates (sugar and sources of fiber)  leads to  higher glucose production and without the 

necessary insulin production the excess glucose is converted to fat and can be deposited onto the 

liver (Nordlie, et al 1999; Wilcox 2005). Because the liver is responsible for the metabolism of 

protein, having a diet high in calories from protein may place excess stress on the liver. For this 

reason, individuals with liver diseases and disorders are often recommended to limit protein 

intake (Academy of Nutrition and Dietetics).  

Clinical thresholds for ALT are 19u/L for women and 30u/L for men (Assy, 2009). Based 

on the model for average ALT, we can predict what levels of ECS and NSS will help a person 

achieve a healthy ALT level. However, for almost all people, the ECS value is unknown. What is 

known is that it is certainly greater than zero based on limit of detection values from NHANES 

data. For that reason, we will consider the contour figures in 4.5. The figure for men indicates 

that without knowledge of chemical exposure, a man (on average- with average levels of the 
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covariates) needs to have a NSS of less than 2.7, while a woman would need to have a score at 

most 0.34 assuming the worst chemical exposure score. So in order to reduce liver stress, men 

are allowed more fluctuation in their diets than women.  

Figure 4.5: Contour Plots for Men and Women Average ALT Versus ECS and NSS 

Women Men 

  

  

 The weighted index for the nutrients also allows for dietary recommendations for 

individuals concerned about liver health. From the analysis, we can say that a diet rich in fruits 

and vegetables is better for liver health than one high in carbohydrates, proteins and fats. The 

Academy of Nutrition and Dietetics also suggests that individuals with symptoms of liver disease 

(including NASH/NAFLD) should avoid excess sodium, fluid, fats and sugars. This is in line 

with the form of NSS, with the lowest weight on vitamins and minerals (i.e. fruits and 

vegetables) and higher weights on sugars, carbohydrates, and proteins. For both men and women 

to have a healthy NSS level and therefore reduce the stress on the liver, they should strive for a 

diet rich in fruits and vegetables, with limited protein, carbohydrates and minimal caffeine.    
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4.2 Limitations 

Because NHANES is a cross-sectional study, only associations can be suggested. No 

causal relationships can be determined or suggested. There also may be other nutrients and 

environmental chemicals that were not considered by this analysis that are associated with 

increased ALT. We also did not estimate an index that identifies nutrients that are “protective” 

rather than non-chemical stressors. Because the weights used to calculate the average bootstrap 

index are those that are significant in the bootstrap samples, they were not independently 

validated. However, this allows for the validation dataset to remain indpendent allowing for a 

true test of significance.  

Despite limitations, this method allows for multiple chemicals and multiple nutrients 

(both with complex correlation structures) to be analyzed in the same model despite complex 

correlation strucutures. The simulations in Chapter 2 characterized the weighted quantile score 

approach and demonstrated that in situations with high pairwise correlations among the 

components and low correlations with the outcome, a bootstrap analysis will lead to improved 

estimates for the weights. We concluded that among sets of highly correlated components, 

weights may be diminshed due to the high correlations but that a zero weight is indicative of a 

lack of association with an outcome and that a nonzero weight is indicative of an association 

with the outcome variable. In our case, the pairwise correlations are in many cases greater than 

0.9 and overall very complex. Additionally, the correlations with the outcome are not extremely 

high (See Figure 4.6). This case is likely a “breakdown case” as described in Chapter 2, but the 

additional bootstrap analysis was shown to offer improvement over a single estimation of 

weights. The simulations in Chapter 2 demonstrated that the addition of the bootstrap analysis 

improves accuracy through improved reliability and validity. The small weights (roughly 0.01-
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0.05) seen in both the chemical and the nutrients reflect the complex correlations among the 

chemicals and nutrients and not lack of association (i.e. 0 weights). Both ECS and NSS can also 

be interpreted as indices indicating associations between persistent environmental chemicals, 

poor nutrition and liver toxicity as measured by ALT.  

Figure 4.6: Distribution of Correlations with Log(ALT) for Chemicals and Nutrients 
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V. Conclusions and Future Work 

5.1 Conclusions 

 The goal of this thesis was to characterize and apply a weighted quantile approach for a 

risk analysis setting. This method is motivated by complex correlation patterns in environmental 

chemicals or other groups of potential predictors with high correlations and potential 

multicollinearity problems. In order to characterize the method, a heuristic argument was made 

and extensive simulations were performed. To demonstrate the usefulness of the method, we 

presented an example using a weighted quantile score approach that modeled liver health (ALT) 

as it relates to environmental chemicals and nutrition.  

 The heuristic argument argued that the addition of the constraint on the weights (they 

sum to 1) stabilizes the optimization process by decreasing the eigenvalue spectrum of the 

hessian. Through simulations, it was shown that the weighted quantile score approach performs 

better than ordinary least squares and LASSO. We also demonstrated that in settings where the 

pairwise correlations are smaller compared to the correlations with the outcome, there is 

breakdown. However, in the breakdown cases (low sample size, high pairwise correlations and 

low correlations with the outcome), the addition of a bootstrap analysis and calculating average 

weights, all important components can be detected. However, we have seen that components 

with high pairwise correlations may have slightly smaller weights. That is, for the same 

correlation with Y, components with high pairwise correlations will have smaller weights than a 

component with the same correlation with the outcome which is independent (or less correlated). 

In cases where components are independent, weights can be interpreted as association with the 

outcome relative to the other components. In cases with complex correlation patterns, weights 

are influenced by both importance with the outcome and the correlation structure.  The 
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simulations demonstrate that the average bootstrap weights for components with no correlation 

with the outcome will be zero or “very near” zero. This is a benefit of the weighted quantile 

score over ordinary regression and LASSO.  

 After characterizing the approach, we applied and interpreted results using real data. 

NHANES biomonitoring data for blood serum levels of PCBs, dioxins, furans and heavy metals 

and 2-day total dietary recall were used to estimate a score for environmental chemicals and a 

score for nutrition as a non-chemical stressor.  The correlation pattern for both the environmental 

chemicals and the nutrients was extremely complex including several pairwise correlations that 

were near perfect (greater than 0.90).  The average weighted score for both the environmental 

chemicals and the nutritional data were found to be significantly associated with increase in ALT 

in a validation dataset. Because the weights indicated nutritional components associated with an 

increase in ALT, high levels of these nutrients may be considered non-chemical stressors. There 

was no significant interaction between the index for the environmental chemicals and nutritional 

status. Because the weighted quantile score approach can be used in a setting with complex 

correlation structure, we were able to model a large number of chemicals and nutrients and their 

effect on a health outcome like ALT. With the weighted quantile approach, a more complete 

assessment of the relationship between these two stressors have on ALT can be ascertained 

visualized.  

5.2  Future Work 

 The method at hand is defined as a weighted quantile score approach, with all examples 

and illustrations done with quartile scoring. The determination for the appropriate number of 

quantiles that should be used has not been evaluated. Quartiles were used because they are the 

most common in the current literature (e.g. Swan, et al; Cave, et al 2010). Future work could 
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entail developing methods to determine the optimal number of quantiles the components of the 

score should be divided into. Additionally, each component could be scored into a different 

number of quantiles.  

 The quartile scoring performed in this thesis also assumes a linear relationship between 

the components and the outcome. However, there could be a potential quadratic effect. For 

example, it could be true that protein (which was seen to increase ALT in Chapter 4) could 

actually be beneficial to health up to a certain point at which the relationship becomes negative 

(i.e. leads to an increase in ALT). It seems reasonable to imagine that a certain amount of protein 

is fine but that there may be a limit to the amount that the liver can metabolize without causing 

undue stress and damage. For this reason, a potential quadratic effect of the quantile-scored 

components could be considered.  

 While we suggest that an increased sample size will have an effect on the stability of the 

results, we do not develop a rule-of-thumb or suggestion for how large of a sample size is needed 

for the analysis. We also only use an equal split for the test/validation datasets. There is debate 

about whether a larger sample size should be used to estimate the weights (higher stability) or if 

a larger sample size should be used for the validation (i.e. higher power). There is certainly a call 

for research on whether or not a 40/60, 60/40, or any other potential split of the data could be 

more optimal.  

 The weights here were all chosen based on the optimization of the likelihood. In the 

examples in this dissertation, log-linear models were discussed, but this certainly can be 

expanded to any likelihood. A paper by Gennings, et al (2013) uses the weighted quantile score 

approach to model time-to-pregnancy using a Weibull survival model. Additionally, a different 

optimization criterion could be considered. If the goal is to estimate and predict an outcome, then 
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a prediction error objective function could be used rather than the maximum likelihood objective 

function.   

 It is clear that negative environmental chemical exposures cannot be completely 

alleviated and that their presence and effects are widespread. We see levels of many chemicals at 

values above the limit of detection in virtually all subjects in the NHANES datasets. Despite the 

ban of many environmental chemicals (i.e. PCBs), due to their persistent nature, levels of these 

are still detected at high rates in populations. For this reason, there is an interest in risk analysis 

to determine if there are possible mitigating or protective effects like good nutrition that can 

diminish the negative effects of environmental chemical exposures. In a mathematical sense, this 

would be an interaction between two indices: one for the negative environmental chemicals and 

possibly non-chemical stressors and one for these potential protective components. This method 

could include an interaction term in the model and even potentially optimize the weights based 

on the interaction term. That is, the optimization could be set to determine what weights optimize 

the parameter for the interaction. This can be thought of like a ds-optimal design which finds a 

study design that minimizes the variance of a subset of the parameters. We could have the 

optimization criterion be related to the precision of the parameter estimation for the interaction 

term. A more basic approach would be to include the interaction term in the likelihood and 

optimize the same as before. However, with indices with large number of components, this may 

lead to difficulty in estimation and a need for a larger sample size.  

 We also assume that there is a direct relationship between the components of the index 

and the health outcome chosen. We do not consider potential mediators in the system. 

Considering the application in Chapter 4: What if the environmental chemicals or non-chemical 

stressor nutrients actually cause insulin resistance and that causes the increase in ALT? If an 
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index (weighted quantile score) and a mediator are placed in the same model, the effect of the 

index may decrease. Consider the diagram in Figure 5.1.  There may be little possibility to 

distinguish between the two situations, especially with cross-sectional data like that in NHANES.  

Figure 5.1 Diagram of Possible Mediating Effect 

 

Conclusion 

 While there are certainly limitations to the weighted quantile approach as presented here, 

the method has been shown to be a promising option in a risk analysis setting.  The possible 

extensions to this work will add to the importance and usefulness of this method.  

 The weighted quantile score method is developed for a risk analysis setting where the 

goal is the identification of “bad actors.” We have shown that the WQS has good validity and 

reliability, especially in cases with higher correlation with the outcome compared to the pairwise 

correlations. In some cases, the method has also demonstrated stability and benefits over current 

methods like OR and LASSO due to the reduction in both false positive and false negative rates. 

While we do not propose the method be used in all modeling, it is a good option for modeling 

highly correlated data when there is a logical grouping (chemicals, nutrients, etc).  
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Appendix II: SAS Code 

A2.1. Simulating Correlated Data 
 

proc iml; 

   

   varnames ={/*Column headings in quotes; space delimited for example: 'y' 'x1' 

'x2'...*/}; 

   varnum = ncol(varnames); 

   mean = 1.5#j(varnum,1,1); *Note 1.5 is mean for quartile scored data (0-3; 

   mean[1]=51; *Input Mean for outcome variable; 

   se =   1.1#j(varnum,1,1); *Note: 1.1 is Std Error for quartile scored data 

   se[1]= 15; *SE for Y; 

   number = 2000; *Number of observations in TOTAL dataset 

 

   corr={/*Input Correlation Matrix: space delimited correlation values;   comma to 

separate rows*/}; 

  

 

 ridge=j(1,12, /*input ridge value; must be greater than 1 as this will be the value for the 

diagonal*/ ); 

corr= (corr-i(12))+diag(ridge); *subtracts off the 1’s on the diagonal and replaces with 

ridge value; 

 var = diag(se)*corr*diag(se);  

   chol = half(var); 

 

do sample = 1 to 1000; *change 1000 to the number of simulations desired; 

 call randseed(12345);  

 

  /* get number random observations from standard normal */  

  yx = j(number,varnum,.);  

  /* each row of m comes from a different distribution */  

  call randgen(yx,'NORMAL'); ** standard normal; 

 

  yx = j(number,1,1)*mean` + yx*chol; 

 

percent=0.5;              *indicates a 50-50 split of the data for test/validation datasets; 

any percent value between 0 and 1 can be used and will determine the split of the 

test/validate datasets;  

 

  results = (sample#j(number,1,1))|| yx || (j(percent#number,1,1)//j((1-

percent)#number,1,2) );  

 

  reslabels = 'sample' || varnames || 'group'; 

  all = all // results; 

end; 

 

create all from all[colname=reslabels]; append from all; run;  
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A2.2 Macro for Simulating Bootstrap Samples 

 

proc iml; 

   varnames = {/*INPUT VARIABLE HEADINGS*/}; 

   varnum = ncol(varnames); 

   mean = 1.5#j(varnum,1,1); 

   mean[1]=51; 

   se =   1.1#j(varnum,1,1); 

   se[1]= 15; 

   number = 500; 

ridge=j(1,12,1);  /*CHANGE RIDGE*/ 

corr= (corr-i(12))+diag(ridge); 

 var = diag(se)*corr*diag(se); 

   chol = half(var); 

 

do sample = 1 to 1000;   /*INPUT THE NUMBER OF SAMPLES 

DESIRED*/ 

call randseed(12345678);  

 

 

  /* get number random observations from standard normal */  

  yx = j(number,varnum,.);  

  /* each row of m comes from a different distribution */  

  call randgen(yx,'NORMAL'); ** standard normal; 

  yx = j(number,1,1)*mean` + yx*chol; 

  percent=0.5; 

  results = (sample#j(number,1,1))|| yx || (j(percent#number,1,1)//j((1-

percent)#number,1,2) );  

  reslabels = 'sample' || varnames || 'group'; 

  all = all // results; 

end; 

create all from all[colname=reslabels]; append from all; 

run; 

 

/*RANK SIMULATED DATA BY SAMPLE*/ 

proc rank data=all groups=4 out=ranked ; 

   by sample; 

   var y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ; 

   ranks yq x1q x2q x3q x4q x5q x6q x7q x8q x9q x10q x11q; 

run; 
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%macro sim(T); 

 %do i = 1 %to &T; 

 

data data; 

set ranked; 

if sample=&i; 

run; 

 

/*RANDOMLY SELECT NUMBER OF DESIRED BOOTSTRAP SAMPLES (e.g. 

reps=100)*/ 

proc surveyselect data=data method=urs n=250 /*n=number of observations used to 

estimate the weights; i.e. the size of the test dataset*/ 

reps=100 seed=113084 outhits out=test.bootstrap;  /*(reps=number of bootstrap 

samples*/ 

strata sample; 

run; 

 

 

 

data test.start; 

   _type_='PARMS'; 

 

/*Define starting values for parameters in model- NOT including weights*/ 

  alpha=-6; beta1=0.1;  sigma=1.0;  

 

/*uses only group=1, i.e. TEST dataset*/ 

group=1; 

 

/*Input weights- starting value is usually 1/c, where c is the number of components*/ 

     array inwts  /*list of weights, space delimited*/;            

   

do over inwts; 

 

     inwts=1/(/*NUMBER OF COMPONENTS IN INDEX- i.e. starting value is 

equal for all*/); 

  end; 

run; 

proc nlp data=test.bootstrap technique= trureg 

                     maxiter=10000 maxfunc=10000  

inest=test.start  /*uses dataset for starting values*/ 

outest=outstuff  /*creates output dataset with weights*/ 

noprint;          
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by replicate; /*INDICATES THAT WEIGHTS BE ESTIMATED FOR 

EACH BOOTSTRAP SAMPLE*/ 

     max logL;                                              

     parms  /INPUT PARAMETERS FOR MODEL*/; 

 

logL= /*INPUT LIKELIHOOD FOR MODEL*/; 

 

 

 

    lincon   /*INPUT CONSTRAINT: wx1q + wx2q + wx3q + …= 1;*/ 

 

 bounds /*INPUT BOUNDS: 0<wx1q<1, 0<wx2q<1, …*/ 

 

 

run; 

 

 

/*Create dataset with weights for each SAMPLE*/ 

data weights&i; 

   set outstuff; 

   where _type_='PARMS'; 

   sample=&i; 

 

run; 

 

 

/*Merge Test Dataset and Weights so WQS can be tested*/  

data test&i; 

merge weights&i test.bootstrap; by replicate; 

where sample=&i; 

run; 

 

/*Create Variable for Index based on weights for each bootstrap sample*/ 

data test&i; 

set test&i; 

wted_sum= wx1q*x1q + wx2q*x2q + wx3q*x3q + wx4q*x4q + wx5q*x5q + 

wx6q*x6q  

     + wx7q*x7q + wx8q*x8q + wx9q*x9q + wx10q*x10q + wx11q*x11q ; 

run;  

 

/*Fits Model- Other procedures can be used here depending on the desired model*/ 
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proc reg data=test&i; 

model y=wted_sum; 

by replicate; 

ods output ParameterEstimates=parms&i; 

run; 

    

/*Creates a variable in dataset to determine if the WQS is significant*/ 

 data parms&i noprint; 

 set work.parms&i; 

 where variable = 'wted_sum';    

 if tvalue >=1.96 then power=1; else power=0; 

 sample=&i; 

run; 

 

%end;  

 

/*MERGE All Weights Datasets together*/ 

data test.FILENAME; /*CHANGE FILE NAME*/ 

 set weights1-weights&T; 

run; 

 

/*MERGE all results from Model fits into 1 dataset*/ 

data test.FILENAME; /*CHANGE FILE NAME*/ 

 set parms1-parms&T; 

run; 

 

/SORT Merged Data*/ 

proc sort data=test.FILENAME;/*CHANGE FILE NAME*/ 

by sample replicate; 

 

/SORT Merged Data*/ 

proc sort data=test.FILENAME;/*CHANGE FILE NAME*/ 

by sample replicate; 

run; 

 

/*Merge 2 Datasets Into One*/ 

data test.all; /*CHANGE FILE NAME*/ 

 merge test.FILENAME test.FILENAME;/*CHANGE FILE NAMES*/ 

 by sample replicate; 

run; 

%mend; 
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%sim(/*Input number of simulated bootstrap samples desired: must be less or equal 

to number from input with SAMPLE at beginning*/); 

 

A2.3 Chapter 4 Code for ECS/NSS, ALT Analysis  

libname app 'C:\Users\carrck\Documents\Dissertation\application chapter\application chapter'; 

 

*libname app 'C:\Users\Caroline\Documents\Dissertation'; 

 

ods html newfile=proc;  

/*/*/*/*/*/*/*/*/*/*Formats*/*/*/*/*/*/*/*/*/*/; 

proc format; 

value cycle 3='2003-2004'; 

value sex 1='Male' 2='Female'; 

value age4cat 1='12-19 years' 2='20-39 years' 3='40-64 years' 4='65-85 years '; 

value ridreth1_ 1='Mexican American' 2='Other Hispanic' 3='Non-Hispanic White' 4='Non-

Hispanic Black' 5='Other/Multiracial'; 

value race 1='NH White' 2='NH Black' 3='Other'; 

value bmi 1='normal (18.5-24.9)' 2='underweight (<18.5)' 3='overweight (25-29.9)' 4='obese 

(>=30)'; 

value bmib 1='BMI <= 25' 2='25 <= BMI <30' 3='BMI >= 30'; 

value ddrink 1='<20 years' 2='non-drinker (<12 drinks in past year)' 3='LE 1 (W) or 2 (M) 

drinks/day' 4='GT 1 (W) or 2 (M) drinks/day';  

value sample 1='Test' 2='Validate'; 

run; 

 

 

************ Dataset Creation ***************;       

  

*Merge lab data files with demographics and medical data; 

data app.PCB_Nutr_Data;  

merge  app.demo_c app.dr1tot_c app.dr2tot_c  

  app.l28dfp_c app.l40fe_c app.l40_c app.alq_c  

  app.l02_c app.mcq_c app.bmx_c app.l28npb_c app.L06bmt_c;  

by seqn; 

 

 *age (note that age limit is 12 years, due to ALT and Lab C criteria, and that adults aged 

85 or older are all coded as 85);  

  if 12<=ridageyr<20 then age4cat=1; else if 20<=ridageyr<40 then age4cat=2; else 

if 40<=ridageyr<65 then age4cat=3;  

  else if 65<=ridageyr then age4cat=4; 

 *race; if ridreth1=3 then race=1; else if ridreth1=4 then race=2; else if ridreth1 in(1,2,5) 

then race=3;  

 *bmi; if 0<=bmxbmi<18.5 then bmicat=2; else if 18.5<=bmxbmi<25 then bmicat=1; else 

if 25<=bmxbmi<30 then bmicat=3;  

   else if bmxbmi>=30 then bmicat=4; 
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  if 0<=bmxbmi<25 then bmicatb=1; else if 25<=bmxbmi<30 then bmicatb=2; else 

if bmxbmi>=30 then bmicatb=3; 

 *alcoholic drinks; if 12<=ridageyr<20 then ddrink=1;  

  if ridageyr>=20 then do;  

  if alq101=2 then ddrink=2;  

  if riagendr=1 then do; if 1<=alq130<=2 then ddrink=3; else if 2<alq130<=95 then 

ddrink=4; end; 

  if riagendr=2 then do; if alq130=1 then ddrink=3; else if 1<alq130<=95 then 

ddrink=4; end;  

  end;  

 format cycle cycle. riagendr sex. age4cat age4cat. race race. ridreth1 ridreth1_. bmicat 

bmi. bmicatb bmib. ddrink ddrink.;  

 

 

 

*Exclusion Criteria;   

 * not in lab C;          if wtsc2yr=. then delete;       

 * missing ALT;         if LBXSATSI=. then delete;      

 * missing BMI;        if BMXBMI=. then delete;     

  

 * missing PIR;        if INDFMPIR=. then delete;     

 * missing drinking;    if ddrink=. and dr1talco=. and dr2talco=. then delete; 

 * hep B surface antigen;  if lbdhbg=1 then delete;   

 * hep C antibody;     if lbdhcv=1 then delete; 

 * transferrin saturation >60% for men, >50% for women;  

         if (riagendr=1 and lbdpct>60) or 

(riagendr=2 and lbdpct>50) then delete; 

 * alcohol intake >=20 g/day for men, >=10 g/day for women;  

         if (riagendr=1 and dr1talco>=20) or 

(riagendr=1 and dr2talco>=20) or  

          (riagendr=2 and dr1talco>=10) or 

(riagendr=2 and dr2talco>=10) then delete; 

 * alcohol intake of >1 (W) or >2 (M) drinks/day;  

         if ddrink=4 then delete; 

 * self-reported liver dz; if MCQ160L=1 then delete;  

 * ALT >99th %ile ;    if LBXSATSI>81 then delete; 

run;  

 

 

 

/*/*/*/*/*/*/*/*/*/*/*/*CREATE NUTRITION DATA*/*/*/*/*/*/*/*/*/*/*/*/; 

 

%macro average(var, var1, var2); 

*   &var=(&var1+&var2)/2; 

    &var=(&var1+&var2)/(DR1TKCAL+DR2TKCAL);  ** relative to Kcal; 

%mend; 

data app.PCB_Nutr_Data; 

   set app.PCB_Nutr_Data; 
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%average(DRTACAR,DR1TACAR,DR2TACAR); 

%average(DRTALCO,DR1TALCO,DR2TALCO); 

%average(DRTATOA,DR1TATOA,DR2TATOA); 

%average(DRTATOC,DR1TATOC,DR2TATOC); 

%average(DRTB12A,DR1TB12A,DR2TB12A); 

%average(DRTBCAR,DR1TBCAR,DR2TBCAR); 

%average(DRTCAFF,DR1TCAFF,DR2TCAFF); 

%average(DRTCALC,DR1TCALC,DR2TCALC); 

%average(DRTCARB,DR1TCARB,DR2TCARB); 

%average(DRTCHL,DR1TCHL,DR2TCHL); 

%average(DRTCHOL,DR1TCHOL,DR2TCHOL); 

%average(DRTCOPP,DR1TCOPP,DR2TCOPP); 

%average(DRTCRYP,DR1TCRYP,DR2TCRYP); 

%average(DRTFA,DR1TFA,DR2TFA); 

%average(DRTFDFE,DR1TFDFE,DR2TFDFE); 

%average(DRTFF,DR1TFF,DR2TFF); 

%average(DRTFIBE,DR1TFIBE,DR2TFIBE); 

%average(DRTFOLA,DR1TFOLA,DR2TFOLA); 

%average(DRTIRON,DR1TIRON,DR2TIRON); 

%average(DRTKCAL,DR1TKCAL,DR2TKCAL); 

%average(DRTLYCO,DR1TLYCO,DR2TLYCO); 

%average(DRTLZ,DR1TLZ,DR2TLZ); 

%average(DRTM161,DR1TM161,DR2TM161); 

%average(DRTM181,DR1TM181,DR2TM181); 

%average(DRTM201,DR1TM201,DR2TM201); 

%average(DRTM221,DR1TM221,DR2TM221); 

%average(DRTMAGN,DR1TMAGN,DR2TMAGN); 

%average(DRTMFAT,DR1TMFAT,DR2TMFAT); 

%average(DRTNIAC,DR1TNIAC,DR2TNIAC); 

%average(DRTP182,DR1TP182,DR2TP182); 

%average(DRTP183,DR1TP183,DR2TP183); 

%average(DRTP184,DR1TP184,DR2TP184); 

%average(DRTP204,DR1TP204,DR2TP204); 

%average(DRTP205,DR1TP205,DR2TP205); 

%average(DRTP225,DR1TP225,DR2TP225); 

%average(DRTP226,DR1TP226,DR2TP226);  

%average(DRTPFAT,DR1TPFAT,DR2TPFAT); 

%average(DRTPHOS,DR1TPHOS,DR2TPHOS); 

%average(DRTPOTA,DR1TPOTA,DR2TPOTA); 

%average(DRTPROT,DR1TPROT,DR2TPROT); 

%average(DRTRET,DR1TRET,DR2TRET); 

%average(DRTS040,DR1TS040,DR2TS040); 

%average(DRTS060,DR1TS060,DR2TS060); 

%average(DRTS080,DR1TS080,DR2TS080); 

%average(DRTS100,DR1TS100,DR2TS100);  

%average(DRTS120,DR1TS120,DR2TS120); 

%average(DRTS140,DR1TS140,DR2TS140); 

%average(DRTS160,DR1TS160,DR2TS160); 
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%average(DRTS180,DR1TS180,DR2TS180); 

%average(DRTSELE,DR1TSELE,DR2TSELE); 

%average(DRTSFAT,DR1TSFAT,DR2TSFAT); 

%average(DRTSODI,DR1TSODI,DR2TSODI); 

%average(DRTSUGR,DR1TSUGR,DR2TSUGR);  

%average(DRTTFAT,DR1TTFAT,DR2TTFAT); 

%average(DRTTHEO,DR1TTHEO,DR2TTHEO); 

%average(DRTVARA,DR1TVARA,DR2TVARA); 

%average(DRTVB1,DR1TVB1,DR2TVB1); 

%average(DRTVB2,DR1TVB2,DR2TVB2); 

%average(DRTVB6,DR1TVB6,DR2TVB6);  

%average(DRTVB12,DR1TVB12,DR2TVB12);  

%average(DRTVC,DR1TVC,DR2TVC); 

%average(DRTVD,DR1TVD,DR2TVD);  

%average(DRTVK,DR1TVK,DR2TVK); 

%average(DRTZINC,DR1TZINC,DR2TZINC); 

 

run; 

 

proc contents data=app.pcb_nutr_data; run; 

 

/*NO ALCO, ATOA, B12A, TP184*/ 

data app.pcb_nutr_data; 

set app.pcb_nutr_data; 

nmiss=nmiss( LBX028LA, LBX066LA, LBX074LA, LBX105LA, LBX118LA, LBX156LA,  

 LBXD03LA, LBXD05LA, LBXD07LA,  LBXF08LA, LBXPCBLA , 

 LBX044LA, LBX049LA, LBX052LA, LBX087LA, LBX099LA, LBX101LA, 

LBX110LA, LBX138LA,  

 LBX146LA, LBX149LA, LBX151LA, LBX153LA, LBX170LA, LBX177LA, 

LBX178LA, LBX180LA, LBX183LA, LBX187LA, LBX194LA,  

 LBX196LA,  LBX206LA, LBX209LA,  

 

 LBXBCD, LBXBPB, LBXTHG, 

  

 DRTACAR, DRTALCO, DRTATOA, DRTATOC, DRTB12A, DRTBCAR, DRTCAFF, 

DRTCALC,  DRTCARB,  

 DRTCOPP, DRTCRYP, DRTFA, DRTFDFE, DRTFF, DRTFIBE, DRTFOLA, 

DRTIRON,  

 DRTLYCO, DRTLZ, DRTM161,  DRTM181, DRTM201, DRTM221, DRTMAGN, 

DRTMFAT, DRTNIAC, 

 DRTP182, DRTP183, DRTP184, DRTP204, DRTP205,  DRTP225, DRTP226, 

DRTPFAT, DRTPHOS, 

 DRTPOTA, DRTPROT, DRTRET, DRTS040, DRTS060, DRTS080,  DRTS100, 

DRTS120, DRTS140, 

 DRTS160, DRTS180, DRTSELE,  DRTSFAT, DRTSODI, DRTSUGR, DRTTFAT, 

DRTTHEO, DRTVARA, 

 DRTVB1, DRTVB2, DRTVB6, DRTVB12, DRTVC, DRTVK, DRTZINC);  

run; 
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proc univariate data=app.pcb_nutr_data; 

var nmiss; 

run; 

 

data app.pcb_nutr_data_nomiss; 

set app.pcb_nutr_data; 

where nmiss=0; 

run; 

 

 

/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*QUARTILE SCORE VARIABLES*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/; 

proc rank data=app.pcb_nutr_data_nomiss group=4 out=pcb_nut_ranked; 

var  

 LBX028LA LBX066LA LBX074LA LBX105LA LBX118LA LBX156LA  

 LBXD03LA LBXD05LA LBXD07LA  LBXF08LA LBXPCBLA  

 LBX044LA LBX049LA LBX052LA LBX087LA LBX099LA LBX101LA LBX110LA 

LBX138LA  

 LBX146LA LBX149LA LBX151LA LBX153LA LBX170LA LBX177LA LBX178LA 

LBX180LA LBX183LA LBX187LA LBX194LA  

 LBX196LA  LBX206LA LBX209LA  

  

 LBXBCD  LBXBPB  LBXTHG  

 

 

 DRTACAR DRTALCO DRTATOA DRTATOC DRTB12A DRTBCAR DRTCAFF 

DRTCALC  DRTCARB  

 DRTCOPP DRTCRYP DRTFA DRTFDFE DRTFF DRTFIBE DRTFOLA DRTIRON 

DRTKCAL 

 DRTLYCO DRTLZ DRTM161  DRTM181 DRTM201 DRTM221 DRTMAGN 

DRTMFAT DRTNIAC 

 DRTP182 DRTP183 DRTP184 DRTP204 DRTP205  DRTP225 DRTP226 DRTPFAT 

DRTPHOS 

 DRTPOTA DRTPROT DRTRET DRTS040 DRTS060 DRTS080  DRTS100 DRTS120 

DRTS140 

 DRTS160 DRTS180 DRTSELE  DRTSFAT DRTSODI DRTSUGR DRTTFAT 

DRTTHEO DRTVARA 

 DRTVB1 DRTVB2 DRTVB6 DRTVB12 DRTVC DRTVK DRTZINC 

; 

Ranks 

 LBX028LAq LBX066LAq LBX074LAq LBX105LAq LBX118LAq LBX156LAq  

 LBXD03LAq LBXD05LAq LBXD07LAq  LBXF08LAq LBXPCBLAq  

 LBX044LAq LBX049LAq LBX052LAq LBX087LAq LBX099LAq LBX101LAq 

LBX110LAq LBX138LAq  

 LBX146LAq LBX149LAq LBX151LAq LBX153LAq LBX170LAq LBX177LAq 

LBX178LAq LBX180LAq LBX183LAq LBX187LAq LBX194LAq  

 LBX196LAq  LBX206LAq LBX209LAq  
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 LBXBCDq  LBXBPBq  LBXTHGq  

 

 

 DRTACARq DRTALCOq DRTATOAq DRTATOCq DRTB12Aq DRTBCARq 

DRTCAFFq DRTCALCq  DRTCARBq  

 DRTCOPPq DRTCRYPq DRTFAq DRTFDFEq DRTFFq DRTFIBEq DRTFOLAq 

DRTIRONq DRTKCALq 

 DRTLYCOq DRTLZq DRTM161q  DRTM181q DRTM201q DRTM221q DRTMAGNq 

DRTMFATq DRTNIACq 

 DRTP182q DRTP183q DRTP184q DRTP204q DRTP205q  DRTP225q DRTP226q 

DRTPFATq DRTPHOSq 

 DRTPOTAq DRTPROTq DRTRETq DRTS040q DRTS060q DRTS080q  DRTS100q 

DRTS120q DRTS140q 

 DRTS160q DRTS180q DRTSELEq  DRTSFATq DRTSODIq DRTSUGRq DRTTFATq 

DRTTHEOq DRTVARAq 

 DRTVB1q DRTVB2q DRTVB6q DRTVB12q DRTVCq DRTVKq DRTZINCq;  

run;  

 

 

proc freq data=pcb_nut_ranked; 

table LBX028LAq LBX066LAq LBX074LAq LBX105LAq LBX118LAq LBX156LAq  

 LBXD03LAq LBXD05LAq LBXD07LAq  LBXF08LAq LBXPCBLAq 

 LBX044LAq LBX049LAq LBX052LAq LBX087LAq LBX099LAq LBX101LAq 

LBX110LAq LBX138LAq  

 LBX146LAq LBX149LAq LBX151LAq LBX153LAq LBX170LAq LBX177LAq 

LBX178LAq LBX180LAq   

 LBX183LAq LBX187LAq LBX194LAq LBX196LAq  LBX206LAq LBX209LAq 

 

 

 LBXBCDq  LBXBPBq  LBXTHGq  

 

 DRTACARq DRTALCOq DRTATOAq DRTATOCq DRTB12Aq DRTBCARq 

DRTCAFFq DRTCALCq  DRTCARBq  

 DRTCOPPq DRTCRYPq DRTFAq DRTFDFEq DRTFFq DRTFIBEq DRTFOLAq 

DRTIRONq DRTKCALq 

 DRTLYCOq DRTLZq DRTM161q  DRTM181q DRTM201q DRTM221q DRTMAGNq 

DRTMFATq DRTNIACq 

 DRTP182q DRTP183q DRTP184q DRTP204q DRTP205q  DRTP225q DRTP226q 

DRTPFATq DRTPHOSq 

 DRTPOTAq DRTPROTq DRTRETq DRTS040q DRTS060q DRTS080q  DRTS100q 

DRTS120q DRTS140q 

 DRTS160q DRTS180q DRTSELEq  DRTSFATq DRTSODIq DRTSUGRq DRTTFATq 

DRTTHEOq DRTVARAq 

 DRTVB1q DRTVB2q DRTVB6q DRTVB12q DRTVCq DRTVKq DRTZINCq; 

run; 

 

/*/*/*/*/*/*/*Check distribution of ALT and Log Transform if Needed*/*/*/*/*/*/*/; 
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proc univariate data=pcb_nut_ranked noprint; 

histogram lbxsatsi;  

run; 

 

data pcb_nut_ranked; 

set pcb_nut_ranked; 

logALT=log(lbxsatsi); 

run;  

 

proc univariate data=pcb_nut_ranked; 

histogram logALT;  

run; 

 

/*/*/*/*/*/*/*Check Correlation of Ranked Variables */*/*/*/*/*/*/; 

proc corr data=pcb_nut_ranked spearman; 

var logalt LBX028LAq LBX066LAq LBX074LAq LBX105LAq LBX118LAq LBX156LAq  

 LBXD03LAq LBXD05LAq LBXD07LAq  LBXF08LAq LBXPCBLAq 

 LBX044LAq LBX049LAq LBX052LAq LBX087LAq LBX099LAq LBX101LAq 

LBX110LAq LBX138LAq  

 LBX146LAq LBX149LAq LBX151LAq LBX153LAq LBX170LAq LBX177LAq 

LBX178LAq LBX180LAq   

 LBX183LAq LBX187LAq LBX194LAq LBX196LAq  LBX206LAq LBX209LAq 

LBXBCDq  LBXBPBq  LBXTHGq; 

run;  

 

proc corr data=pcb_nut_ranked spearman; 

var logalt LBXBCD  LBXBPB  LBXTHG  ; 

run;  

 

/*NO ALCO, ATOA, B12A, TP184*/ 

proc corr data=pcb_nut_ranked spearman; 

var logalt 

 DRTACARq   DRTATOCq  DRTBCARq DRTCAFFq DRTCALCq  DRTCARBq  

 DRTCOPPq DRTCRYPq DRTFAq DRTFDFEq DRTFFq DRTFIBEq DRTFOLAq 

DRTIRONq  

 DRTLYCOq DRTLZq DRTM161q  DRTM181q DRTM201q DRTM221q DRTMAGNq 

DRTMFATq DRTNIACq 

 DRTP182q DRTP183q  DRTP204q DRTP205q  DRTP225q DRTP226q DRTPFATq 

DRTPHOSq 

 DRTPOTAq DRTPROTq DRTRETq DRTS040q DRTS060q DRTS080q  DRTS100q 

DRTS120q DRTS140q 

 DRTS160q DRTS180q DRTSELEq  DRTSFATq DRTSODIq DRTSUGRq DRTTFATq 

DRTTHEOq DRTVARAq 

 DRTVB1q DRTVB2q DRTVB6q DRTVB12q DRTVCq DRTVKq DRTZINCq; 

run; 

 

 

/*/*/*/*/*/*/*SPLIT INTO TEST/VALIDATE DATASETS*/*/*/*/*/*/*/; 
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DATA pcb_nut_ranked; 

set pcb_nut_ranked; 

i=ranuni(99); 

run; 

proc sort data=pcb_nut_ranked; by i; run; 

data pcb_nut_ranked; 

set pcb_nut_ranked; 

obs=_n_; 

run;  

 

data pcb_nut_ranked; 

set pcb_nut_ranked; 

if obs<=(928/2) then sample=1; 

if obs>(928/2) then sample=0; 

if ridreth1=3 then bin_race=0; 

else bin_race=1; 

run; 

run; 

 

 

/*Test Covariates Across 2 Datasets*/ 

%macro test(var); 

Proc genmod data=pcb_nut_ranked; 

class sample; 

model sample=&var /type3; 

run; 

%mend; 

 

%test(bin_race); 

%test(RIDAGEYR); 

%test( riagendr); 

%test(indfmpir); 

%test(bmxbmi); 

%test(logalt); 

 

proc freq data=pcb_nut_ranked;  

table riagendr*sample; 

table bin_race*sample; 

run; 

 

 

/*Create TEST Dataset*/ 

data app.test; 

set pcb_nut_ranked; 

where sample=1; 

run; 

 

/*Create VALIDATION Dataset*/ 
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data app.validate; 

set pcb_nut_ranked; 

where sample=0; 

run; 

 

data app.test; 

set app.test; 

if ridreth1=3 then bin_race=0; 

else bin_race=1; 

run; 

 

data app.validate; 

set app.validate; 

if ridreth1=3 then bin_race=0; 

else bin_race=1; 

run; 

 

proc freq data=app.validate; 

table bin_race; 

run; 

 

data app.test_small; 

set app.test; 

keep  

 

/*outcome*/ 

logALT seqn 

 

/*covariates*/ 

  bin_race ridreth1 RIDAGEYR riagendr  indfmpir  bmxbmi 

 

/*nutrients quartile score*/ 

 DRTACARq   DRTATOCq  DRTBCARq DRTCAFFq DRTCALCq  DRTCARBq  

 DRTCOPPq DRTCRYPq DRTFAq DRTFDFEq DRTFFq DRTFIBEq DRTFOLAq 

DRTIRONq  

 DRTLYCOq DRTLZq DRTM161q  DRTM181q DRTM201q DRTM221q DRTMAGNq 

DRTMFATq DRTNIACq 

 DRTP182q DRTP183q  DRTP204q DRTP205q  DRTP225q DRTP226q DRTPFATq 

DRTPHOSq 

 DRTPOTAq DRTPROTq DRTRETq DRTS040q DRTS060q DRTS080q  DRTS100q 

DRTS120q DRTS140q 

 DRTS160q DRTS180q DRTSELEq  DRTSFATq DRTSODIq DRTSUGRq DRTTFATq 

DRTTHEOq DRTVARAq 

 DRTVB1q DRTVB2q DRTVB6q DRTVB12q DRTVCq DRTVKq DRTZINCq 

 

/*chems quartile score*/ 

 LBX028LAq LBX066LAq LBX074LAq LBX105LAq LBX118LAq LBX156LAq  

 LBXD03LAq LBXD05LAq LBXD07LAq  LBXF08LAq LBXPCBLAq 
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 LBX044LAq LBX049LAq LBX052LAq LBX087LAq LBX099LAq LBX101LAq 

LBX110LAq LBX138LAq  

 LBX146LAq LBX149LAq LBX151LAq LBX153LAq LBX170LAq LBX177LAq 

LBX178LAq LBX180LAq   

 LBX183LAq LBX187LAq LBX194LAq LBX196LAq  LBX206LAq LBX209LAq  

 

 LBXBCDq  LBXBPBq  LBXTHGq  

 

 ; 

 

run; 

 

 

data app.validate_small; 

set app.validate; 

keep  

 

/*outcome*/ 

logALT seqn 

 

/*covariates*/ 

  bin_race ridreth1 RIDAGEYR riagendr  indfmpir  bmxbmi 

 

/*nutrients quartile score*/ 

 DRTACARq   DRTATOCq  DRTBCARq DRTCAFFq DRTCALCq  DRTCARBq  

 DRTCOPPq DRTCRYPq DRTFAq DRTFDFEq DRTFFq DRTFIBEq DRTFOLAq 

DRTIRONq  

 DRTLYCOq DRTLZq DRTM161q  DRTM181q DRTM201q DRTM221q DRTMAGNq 

DRTMFATq DRTNIACq 

 DRTP182q DRTP183q  DRTP204q DRTP205q  DRTP225q DRTP226q DRTPFATq 

DRTPHOSq 

 DRTPOTAq DRTPROTq DRTRETq DRTS040q DRTS060q DRTS080q  DRTS100q 

DRTS120q DRTS140q 

 DRTS160q DRTS180q DRTSELEq  DRTSFATq DRTSODIq DRTSUGRq DRTTFATq 

DRTTHEOq DRTVARAq 

 DRTVB1q DRTVB2q DRTVB6q DRTVB12q DRTVCq DRTVKq DRTZINCq 

 

/*chems quartile score*/ 

 LBX028LAq LBX066LAq LBX074LAq LBX105LAq LBX118LAq LBX156LAq  

 LBXD03LAq LBXD05LAq LBXD07LAq  LBXF08LAq LBXPCBLAq 

 

 LBX044LAq LBX049LAq LBX052LAq LBX087LAq LBX099LAq LBX101LAq 

LBX110LAq LBX138LAq  

 LBX146LAq LBX149LAq LBX151LAq LBX153LAq LBX170LAq LBX177LAq 

LBX178LAq LBX180LAq   

 LBX183LAq LBX187LAq LBX194LAq LBX196LAq  LBX206LAq LBX209LAq  
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 LBXBCDq  LBXBPBq  LBXTHGq  

 

 ; 

 

run; 

 

 

 

/*/*/*/*/*/*/*/*/*ESTIMATE Chems WEIGHTS FROM TEST DATASET*/*/*/*/*/*/*/*/*/; 

/*  b1*RIDRETH1 - b2*RIDAGEYR - b3*riagendr- -b4*indfmpir-b5*bmxbmi*/ 

data start; 

   _type_='PARMS'; 

   alpha=2; Chems=0.10001; b1=0.1; b2=-0.1; b3=-0.2; b4=0.1; b5=0.01;  sigma=1.0;  

     array inwts  

 

 WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  

 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq 

 

 WLBXBCDq  WLBXBPBq  WLBXTHGq  

 

  

 ; 

          

        

  do over inwts; 

     inwts=1/36; 

  end; 

 

proc nlp data=app.test_small technique=trureg 

         maxiter=10000 maxfunc=10000 inest=start outest=outstuff nomiss;            

*objective function; 

     max logL;                                              

*define parameters; *nutr; 

     parms alpha CHEMS  b1 b2 b3 b4 b5 

 

  

  WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  
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 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq 

 WLBXBCDq  WLBXBPBq  WLBXTHGq 

  ;         

                       

*program statements; 

    logL= -0.5*log(sigma)-0.5*(1/sigma)*(logALT-alpha- 

  - b1*bin_race - b2*RIDAGEYR - b3*riagendr- -b4*indfmpir-b5*bmxbmi 

   -chems * ( WLBXBCDq*LBXBCDq+  WLBXBPBq*LBXBPBq+  

WLBXTHGq*LBXTHGq +WLBX028LAq*LBX028LAq+ WLBX066LAq*LBX066LAq+ 

WLBX074LAq*LBX074LAq+ WLBX105LAq*LBX105LAq+ 

     WLBX118LAq*LBX118LAq+ 

WLBX156LAq*LBX156LAq+ WLBXD03LAq*LBXD03LAq+ 

WLBXD05LAq*LBXD05LAq+ 

     WLBXD07LAq*LBXD07LAq+ 

WLBXF08LAq*LBXF08LAq+ WLBXPCBLAq*LBXPCBLAq+ 

WLBX044LAq*LBX044LAq+ 

     WLBX049LAq*LBX049LAq+ 

WLBX052LAq*LBX052LAq+ WLBX087LAq*LBX087LAq+ WLBX099LAq*LBX099LAq+  

     WLBX101LAq*LBX101LAq+ 

WLBX110LAq*LBX110LAq+ WLBX138LAq*LBX138LAq+ WLBX146LAq*LBX146LAq+  

     WLBX149LAq*LBX149LAq+ 

WLBX151LAq*LBX151LAq+ WLBX153LAq*LBX153LAq+ WLBX170LAq*LBX170LAq+  

     WLBX177LAq*LBX177LAq+ 

WLBX178LAq*LBX178LAq+ WLBX180LAq*LBX180LAq+ WLBX183LAq*LBX183LAq+  

     WLBX187LAq*LBX187LAq+ 

WLBX194LAq*LBX194LAq+ WLBX196LAq*LBX196LAq+  WLBX206LAq*LBX206LAq+  

     WLBX209LAq*LBX209LAq))**2; 

 

 

  

 

*linear constraints; 

     lincon  

  /*Weights for Chems sum to 1*/ 

    WLBX028LAq+ WLBX066LAq+ WLBX074LAq+ 

WLBX105LAq+ 

     WLBX118LAq+ WLBX156LAq+ WLBXD03LAq+ 

WLBXD05LAq+ 

     WLBXD07LAq+ WLBXF08LAq+ WLBXPCBLAq+ 

WLBX044LAq+ 

     WLBX049LAq+ WLBX052LAq+ WLBX087LAq+ 

WLBX099LAq+  

     WLBX101LAq+ WLBX110LAq+ WLBX138LAq+ 

WLBX146LAq+  
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     WLBX149LAq+ WLBX151LAq+ WLBX153LAq+ 

WLBX170LAq+  

     WLBX177LAq+ WLBX178LAq+ WLBX180LAq+ 

WLBX183LAq+  

     WLBX187LAq+ WLBX194LAq+ WLBX196LAq+  

WLBX206LAq+  

     WLBX209LAq+ WLBXBCDq+  WLBXBPBq+  

WLBXTHGq= 1;  

 

   

*bounds on weights: all in (0,1); 

     bounds  

     0<WLBX028LAq<1, 0<WLBX066LAq<1, 

0<WLBX074LAq<1, 0<WLBX105LAq<1, 

     0<WLBX118LAq<1, 0<WLBX156LAq<1,

 0<WLBXD03LAq<1, 0<WLBXD05LAq<1, 

     0<WLBXD07LAq<1, 0<WLBXF08LAq<1, 

0<WLBXPCBLAq<1, 0<WLBX044LAq<1, 

     0<WLBX049LAq<1, 0<WLBX052LAq<1, 

0<WLBX087LAq<1, 0<WLBX099LAq<1,  

     0<WLBX101LAq<1, 0<WLBX110LAq<1, 

0<WLBX138LAq<1, 0<WLBX146LAq<1,  

     0<WLBX149LAq<1, 0<WLBX151LAq<1, 

0<WLBX153LAq<1, 0<WLBX170LAq<1,  

     0<WLBX177LAq<1, 0<WLBX178LAq<1, 

0<WLBX180LAq<1, 0<WLBX183LAq<1,  

     0<WLBX187LAq<1, 0<WLBX194LAq<1, 

0<WLBX196LAq<1, 0<WLBX206LAq<1,  

      0<WLBX209LAq<1, 0<WLBXBCDq<1,   

0<WLBXBPBq<1,   0<WLBXTHGq<1, 

  

 

     

 

/*determine set of "protective" nutrients by constraining vits to be negative and "negative" chems 

by constraining pcbs positive*/ 

   chems>0.01;  

run;  

 

/*/*/*/*/*/*/*/*/*/*/*VALIDATE WEIGHTS IN VALIDATE DATASET*/*/*/*/*/*/*/*/*/*/*/; 

/*Populate dataset with weights and set MERGE-BY Variable*/ 

data outstuff; 

set work.outstuff; 

where _type_='PARMS'; 

sample=1; 

run; 

 

data validate; 
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set app.validate_small; 

sample=1; 

run; 

 

 

 

/*VALIDATE WEIGHTS FROM TEST DATASET*/ 

 

data together; 

      merge test outstuff; 

   by sample; 

   chems = WLBX028LAq*LBX028LAq+ WLBX066LAq*LBX066LAq+ 

WLBX074LAq*LBX074LAq+ WLBX105LAq*LBX105LAq+ 

     WLBX118LAq*LBX118LAq+ 

WLBX156LAq*LBX156LAq+ WLBXD03LAq*LBXD03LAq+ 

WLBXD05LAq*LBXD05LAq+ 

     WLBXD07LAq*LBXD07LAq+ 

WLBXF08LAq*LBXF08LAq+ WLBXPCBLAq*LBXPCBLAq+ 

WLBX044LAq*LBX044LAq+ 

     WLBX049LAq*LBX049LAq+ 

WLBX052LAq*LBX052LAq+ WLBX087LAq*LBX087LAq+ WLBX099LAq*LBX099LAq+  

     WLBX101LAq*LBX101LAq+ 

WLBX110LAq*LBX110LAq+ WLBX138LAq*LBX138LAq+ WLBX146LAq*LBX146LAq+  

     WLBX149LAq*LBX149LAq+ 

WLBX151LAq*LBX151LAq+ WLBX153LAq*LBX153LAq+ WLBX170LAq*LBX170LAq+  

     WLBX177LAq*LBX177LAq+ 

WLBX178LAq*LBX178LAq+ WLBX180LAq*LBX180LAq+ WLBX183LAq*LBX183LAq+  

     WLBX187LAq*LBX187LAq+ 

WLBX194LAq*LBX194LAq+ WLBX196LAq*LBX196LAq+  WLBX206LAq*LBX206LAq+  

     WLBX209LAq*LBX209LAq+ 

WLBXBCDq*LBXBCDq+  WLBXBPBq*LBXBPBq+  WLBXTHGq*LBXTHGq; 

 

 

 

 

 

 

proc genmod data=together ; 

class bin_race riagendr ; 

   model logalt = chems  bin_race RIDAGEYR riagendr  indfmpir  bmxbmi/type3; *nutr; 

   ods output ParameterEstimates=parms; 

    run; 

 

 

 

/*/*/*/*/*/*/*/*/*/*/*/*/*/*BOOTSTRAP FROM TEST DATASET*/*/*/*/*/*/*/*/*/*/*/*/*/*/; 

     

proc surveyselect data=app.test_small method=urs n=464 
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reps=1000 seed=113084 outhits out=work.boot_test; 

run; 

 

 

data start; 

   _type_='PARMS'; 

   alpha=2; Chems=0.10001; b1=0.1; b2=0.1; b3=-0.2; b4=0.1; b5=0.01; b6=-0.1; sigma=1.0;  

     array inwts  

 

 WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  

 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq WLBXBCDq  WLBXBPBq   WLBXTHGq ; 

          

        

  do over inwts; 

     inwts=1/36; 

  end; 

 

proc nlp data=boot_test technique=trureg 

         maxiter=10000 maxfunc=10000 inest=start outest=outstuff nomiss ; 

*set by variable for bootstrap samples; 

by replicate;  

*objective function; 

     max logL;                                              

*define parameters; 

    parms alpha chems b1 b2 b3 b4 b5 b6 

  WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  

 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq WLBXBCDq  WLBXBPBq   WLBXTHGq; 

 

 

*program statements; 

    logL= -0.5*log(sigma)-0.5*(1/sigma)*(logALT-alpha- 

  - b1*bin_race - b2*RIDAGEYR-b6*ridageyr*ridageyr - b3*riagendr- -b4*indfmpir-

b5*bmxbmi 
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   -chems * ( WLBX028LAq*LBX028LAq+ 

WLBX066LAq*LBX066LAq+ WLBX074LAq*LBX074LAq+ WLBX105LAq*LBX105LAq+ 

     WLBX118LAq*LBX118LAq+ 

WLBX156LAq*LBX156LAq+ WLBXD03LAq*LBXD03LAq+ 

WLBXD05LAq*LBXD05LAq+ 

     WLBXD07LAq*LBXD07LAq+ 

WLBXF08LAq*LBXF08LAq+ WLBXPCBLAq*LBXPCBLAq+ 

WLBX044LAq*LBX044LAq+ 

     WLBX049LAq*LBX049LAq+ 

WLBX052LAq*LBX052LAq+ WLBX087LAq*LBX087LAq+ WLBX099LAq*LBX099LAq+  

     WLBX101LAq*LBX101LAq+ 

WLBX110LAq*LBX110LAq+ WLBX138LAq*LBX138LAq+ WLBX146LAq*LBX146LAq+  

     WLBX149LAq*LBX149LAq+ 

WLBX151LAq*LBX151LAq+ WLBX153LAq*LBX153LAq+ WLBX170LAq*LBX170LAq+  

     WLBX177LAq*LBX177LAq+ 

WLBX178LAq*LBX178LAq+ WLBX180LAq*LBX180LAq+ WLBX183LAq*LBX183LAq+  

     WLBX187LAq*LBX187LAq+ 

WLBX194LAq*LBX194LAq+ WLBX196LAq*LBX196LAq+  WLBX206LAq*LBX206LAq+  

       WLBX209LAq*LBX209LAq+ 

WLBXBCDq*LBXBCDq+  WLBXBPBq*LBXBPBq+  WLBXTHGq*LBXTHGq))**2; 

    

  

 

*linear constraints; 

     lincon  

  /*Weights for chems sum to 1;*/ 

     WLBX028LAq+ WLBX066LAq+ WLBX074LAq+ 

WLBX105LAq+ 

     WLBX118LAq+ WLBX156LAq+ WLBXD03LAq+ 

WLBXD05LAq+ 

     WLBXD07LAq+ WLBXF08LAq+ WLBXPCBLAq+ 

WLBX044LAq+ 

     WLBX049LAq+ WLBX052LAq+ WLBX087LAq+ 

WLBX099LAq+  

     WLBX101LAq+ WLBX110LAq+ WLBX138LAq+ 

WLBX146LAq+  

     WLBX149LAq+ WLBX151LAq+ WLBX153LAq+ 

WLBX170LAq+  

     WLBX177LAq+ WLBX178LAq+ WLBX180LAq+ 

WLBX183LAq+  

     WLBX187LAq+ WLBX194LAq+ WLBX196LAq+  

WLBX206LAq+  

     WLBX209LAq+ WLBXBCDq+  WLBXBPBq + 

WLBXTHGq= 1; */ 

 

  

*bounds on weights: all in (0,1); 

     bounds  
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     0<WLBX028LAq<1, 0<WLBX066LAq<1, 

0<WLBX074LAq<1, 0<WLBX105LAq<1, 

     0<WLBX118LAq<1, 0<WLBX156LAq<1,

 0<WLBXD03LAq<1, 0<WLBXD05LAq<1, 

     0<WLBXD07LAq<1, 0<WLBXF08LAq<1, 

0<WLBXPCBLAq<1, 0<WLBX044LAq<1, 

     0<WLBX049LAq<1, 0<WLBX052LAq<1, 

0<WLBX087LAq<1, 0<WLBX099LAq<1,  

     0<WLBX101LAq<1, 0<WLBX110LAq<1, 

0<WLBX138LAq<1, 0<WLBX146LAq<1,  

     0<WLBX149LAq<1, 0<WLBX151LAq<1, 

0<WLBX153LAq<1, 0<WLBX170LAq<1,  

     0<WLBX177LAq<1, 0<WLBX178LAq<1, 

0<WLBX180LAq<1, 0<WLBX183LAq<1,  

     0<WLBX187LAq<1, 0<WLBX194LAq<1, 

0<WLBX196LAq<1,  0<WLBX206LAq<1,  

     0<WLBX209LAq<1, 0<WLBXBCDq<1,   

0<WLBXBPBq<1,   0<WLBXTHGq<1, 

 

 

 

/*determine set of "protective" nutrients by constraining vits to be negative and "negative" chems 

by constraining pcbs positive*/ 

    chems>0.01; 

run;  

 

/*/*/*/*/*/*/*/*/*/*/*VALIDATE WEIGHTS IN VALIDATE DATASET*/*/*/*/*/*/*/*/*/*/*/; 

/*Populate dataset with weights and set MERGE-BY Variable*/ 

 

/*Keep only Parameter Estimates*/ 

data work.outstuff; 

set work.outstuff; 

where _type_='PARMS'; 

run; 

 

 

/*Validate bootstrap samples in Validate dataset*/ 

/* 

data replicates; 

do replicate=1 to 1000; 

 do obs=1 to 464; output; 

 end; 

end; 

run; 

 

data valid_rep; 

set app.validate_small; 

obs=_n_; 
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run; 

proc sort data=work.valid_rep; 

by obs; 

run; 

 

proc sort data=work.replicates; 

by obs; 

run; 

 

data valid_rep_tog; 

merge valid_rep replicates; 

by obs; 

run; 

 

proc sort data=valid_rep_tog;; 

by replicate; 

run; 

 

proc sort data=outstuff; 

by replicate; 

run; 

*/ 

 

 

/*Validate bootstrap samples in bootstrap samples dataset*/ 

 

 

/*VALIDATE WEIGHTS FROM TEST DATASET*/ 

data together; 

      merge boot_test outstuff; by replicate;  

  chems =  WLBX028LAq*LBX028LAq+ WLBX066LAq*LBX066LAq+ 

WLBX074LAq*LBX074LAq+ WLBX105LAq*LBX105LAq+ 

     WLBX118LAq*LBX118LAq+ 

WLBX156LAq*LBX156LAq+ WLBXD03LAq*LBXD03LAq+ 

WLBXD05LAq*LBXD05LAq+ 

     WLBXD07LAq*LBXD07LAq+ 

WLBXF08LAq*LBXF08LAq+ WLBXPCBLAq*LBXPCBLAq+ 

WLBX044LAq*LBX044LAq+ 

     WLBX049LAq*LBX049LAq+ 

WLBX052LAq*LBX052LAq+ WLBX087LAq*LBX087LAq+ WLBX099LAq*LBX099LAq+  

     WLBX101LAq*LBX101LAq+ 

WLBX110LAq*LBX110LAq+ WLBX138LAq*LBX138LAq+ WLBX146LAq*LBX146LAq+  

     WLBX149LAq*LBX149LAq+ 

WLBX151LAq*LBX151LAq+ WLBX153LAq*LBX153LAq+ WLBX170LAq*LBX170LAq+  

     WLBX177LAq*LBX177LAq+ 

WLBX178LAq*LBX178LAq+ WLBX180LAq*LBX180LAq+ WLBX183LAq*LBX183LAq+  

     WLBX187LAq*LBX187LAq+ 

WLBX194LAq*LBX194LAq+ WLBX196LAq*LBX196LAq+  WLBX206LAq*LBX206LAq+  
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     WLBX209LAq*LBX209LAq+ 

WLBXBCDq*LBXBCDq+  WLBXBPBq*LBXBPBq+  WLBXTHGq*LBXTHGq; 

 

  run; 

 

proc genmod data=together ; 

by replicate; 

class bin_race riagendr ; 

   model logalt = chems  bin_race ridageyr ridageyr*ridageyr riagendr  indfmpir  

bmxbmi/type3;/*nutr*/ 

   ods output ParameterEstimates=parms; 

    run; 

 

 

 

data chems; 

set work.parms; 

where parameter='chems'; 

if probchisq<=0.05 then power=1; 

else power=0; 

run; 

 

proc freq data=chems; 

tables power; 

run; 

  

data chems_weights; 

merge chems outstuff; 

by replicate; 

run;  

 

ods rtf file="C:\Users\Caroline\Documents\Dissertation\WORK\means_chem.rtf"; 

proc means data=chems_weights; 

where power=1; 

var WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  

 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq WLBXBCDq  WLBXBPBq WLBXTHGq; 

 ods output summary=means; 

 

 run; 

ods rtf close; 

 



www.manaraa.com

 
 

121 
 

data validate; 

set app.validate_small; 

dummy=1; 

run; 

 

data means; 

set work.means; 

dummy=1; 

run; 

 

data val_means; 

merge validate means; 

by dummy; 

run; 

data val_means; 

set val_means; 

chems_mean=   WLBX028LAq_mean*LBX028LAq+ 

WLBX066LAq_mean*LBX066LAq+ WLBX074LAq_mean*LBX074LAq+ 

WLBX105LAq_mean*LBX105LAq+ 

     WLBX118LAq_mean*LBX118LAq+ 

WLBX156LAq_mean*LBX156LAq+ WLBXD03LAq_mean*LBXD03LAq+ 

WLBXD05LAq_mean*LBXD05LAq+ 

     WLBXD07LAq_mean*LBXD07LAq+ 

WLBXF08LAq_mean*LBXF08LAq+ WLBXPCBLAq_mean*LBXPCBLAq+ 

WLBX044LAq_mean*LBX044LAq+ 

     WLBX049LAq_mean*LBX049LAq+ 

WLBX052LAq_mean*LBX052LAq+ WLBX087LAq_mean*LBX087LAq+ 

WLBX099LAq_mean*LBX099LAq+  

     WLBX101LAq_mean*LBX101LAq+ 

WLBX110LAq_mean*LBX110LAq+ WLBX138LAq_mean*LBX138LAq+ 

WLBX146LAq_mean*LBX146LAq+  

     WLBX149LAq_mean*LBX149LAq+ 

WLBX151LAq_mean*LBX151LAq+ WLBX153LAq_mean*LBX153LAq+ 

WLBX170LAq_mean*LBX170LAq+  

     WLBX177LAq_mean*LBX177LAq+ 

WLBX178LAq_mean*LBX178LAq+ WLBX180LAq_mean*LBX180LAq+ 

WLBX183LAq_mean*LBX183LAq+  

     WLBX187LAq_mean*LBX187LAq+ 

WLBX194LAq_mean*LBX194LAq+ WLBX196LAq_mean*LBX196LAq+ 

WLBX206LAq_mean*LBX206LAq+  

     WLBX209LAq_mean*LBX209LAq+ 

WLBXBCDq_mean*LBXBCDq+     WLBXBPBq_mean*LBXBPBq+     

WLBXTHGq_mean*LBXTHGq; 

 ; 

 

run; 

 

proc genmod data=val_means; 
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class bin_race riagendr ; 

   model logalt = chems_mean  bin_race RIDAGEYR ridageyr*ridageyr riagendr  indfmpir  

bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

 data app.chems_finalmodel; 

 set work.parms; 

 run; 

 

proc univariate data=chems_weights noprint; 

where power=1; 

histogram WLBX028LAq WLBX066LAq WLBX074LAq WLBX105LAq WLBX118LAq 

WLBX156LAq  

 WLBXD03LAq WLBXD05LAq WLBXD07LAq  WLBXF08LAq WLBXPCBLAq 

 WLBX044LAq WLBX049LAq WLBX052LAq WLBX087LAq WLBX099LAq 

WLBX101LAq WLBX110LAq WLBX138LAq  

 WLBX146LAq WLBX149LAq WLBX151LAq WLBX153LAq WLBX170LAq 

WLBX177LAq WLBX178LAq WLBX180LAq   

 WLBX183LAq WLBX187LAq WLBX194LAq WLBX196LAq  WLBX206LAq 

WLBX209LAq WLBXBCDq  WLBXBPBq WLBXTHGq; 

 inset n mean p5='5th Percentile' p95='95th Percentile' / pos = ne height=4.0 

format=best4.; 

 run; 

 

 

/*/*/*/*/*/*/*/*/*ESTIMATE NUTR WEIGHTS FROM TEST DATASET*/*/*/*/*/*/*/*/*/; 

data start; 

   _type_='PARMS'; 

   alpha=2; nutr=0.10001; b1=0.1; b2=0.1; b3=-0.2; b4=0.1; b5=0.01; b6=-.1 ; sigma=1.0;  

     array inwts  

 

 WDRTACARq   WDRTATOCq  WDRTBCARq WDRTCAFFq WDRTCALCq  

WDRTCARBq  

 WDRTCOPPq WDRTCRYPq WDRTFAq WDRTFDFEq WDRTFFq WDRTFIBEq 

WDRTFOLAq WDRTIRONq  

 WDRTLYCOq WDRTLZq WDRTM161q  WDRTM181q WDRTM201q WDRTM221q 

WDRTMAGNq WDRTMFATq WDRTNIACq 

 WDRTP182q WDRTP183q  WDRTP204q WDRTP205q  WDRTP225q WDRTP226q 

WDRTPFATq WDRTPHOSq 

 WDRTPOTAq WDRTPROTq WDRTRETq WDRTS040q WDRTS060q WDRTS080q  

WDRTS100q WDRTS120q WDRTS140q 

 WDRTS160q WDRTS180q WDRTSELEq  WDRTSFATq WDRTSODIq 

WDRTSUGRq WDRTTFATq WDRTTHEOq WDRTVARAq 

 WDRTVB1q WDRTVB2q WDRTVB6q WDRTVB12q WDRTVCq WDRTVKq 

WDRTZINCq 
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 ; 

          

        

  do over inwts; 

     inwts=1/56; 

  end; 

 

proc nlp data=app.test_small technique=trureg 

         maxiter=10000 maxfunc=10000 inest=start outest=outstuff nomiss;            

*objective function; 

     max logL;                                              

*define parameters; *nutr; 

     parms alpha nutr   b1 b2 b3 b4 b5 

  WDRTACARq   WDRTATOCq  WDRTBCARq WDRTCAFFq WDRTCALCq  

WDRTCARBq  

 WDRTCOPPq WDRTCRYPq WDRTFAq WDRTFDFEq WDRTFFq WDRTFIBEq 

WDRTFOLAq WDRTIRONq  

 WDRTLYCOq WDRTLZq WDRTM161q  WDRTM181q WDRTM201q WDRTM221q 

WDRTMAGNq WDRTMFATq WDRTNIACq 

 WDRTP182q WDRTP183q  WDRTP204q WDRTP205q  WDRTP225q WDRTP226q 

WDRTPFATq WDRTPHOSq 

 WDRTPOTAq WDRTPROTq WDRTRETq WDRTS040q WDRTS060q WDRTS080q  

WDRTS100q WDRTS120q WDRTS140q 

 WDRTS160q WDRTS180q WDRTSELEq  WDRTSFATq WDRTSODIq 

WDRTSUGRq WDRTTFATq WDRTTHEOq WDRTVARAq 

 WDRTVB1q WDRTVB2q WDRTVB6q WDRTVB12q WDRTVCq WDRTVKq 

WDRTZINCq ;         

                       

*program statements; 

    logL= -0.5*log(sigma)-0.5*(1/sigma)*(logALT-alpha- 

  - b1*bin_race - b2*RIDAGEYR - b3*riagendr- -b4*indfmpir-b5*bmxbmi- 

b2*RIDAGEYR*RIDAGEYR 

 

      

 

   -nutr* (WDRTACARq*DRTACARq+ WDRTATOCq*DRTATOCq+ 

WDRTBCARq*DRTBCARq+ WDRTCAFFq*DRTCAFFq+ WDRTCALCq*DRTCALCq+ 

     WDRTCARBq*DRTCARBq+

 WDRTCOPPq*DRTCOPPq+ WDRTCRYPq*DRTCRYPq+ WDRTFAq*DRTFAq+ 

WDRTFDFEq*DRTFDFEq+ 

     WDRTFFq*DRTFFq+ WDRTFIBEq*DRTFIBEq+ 

WDRTFOLAq*DRTFOLAq+ WDRTIRONq*DRTIRONq+ WDRTLYCOq*DRTLYCOq+ 

     WDRTLZq*DRTLZq+ WDRTM161q*DRTM161q+ 

WDRTM181q*DRTM181q+ WDRTM201q*DRTM201q+ WDRTM221q*DRTM221q+ 

     WDRTMAGNq*DRTMAGNq+ 

WDRTMFATq*DRTMFATq+ WDRTNIACq*DRTNIACq+ WDRTP182q*DRTP182q+ 

WDRTP183q*DRTP183q+ 
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     WDRTP204q*DRTP204q+ WDRTP205q*DRTP205q+  

WDRTP225q*DRTP225q+ WDRTP226q*DRTP226q+ WDRTPFATq*DRTPFATq+ 

     WDRTPHOSq*DRTPHOSq+

 WDRTPOTAq*DRTPOTAq+ WDRTPROTq*DRTPROTq+ WDRTRETq*DRTRETq+ 

WDRTS040q*DRTS040q+  

     WDRTS060q*DRTS060q+ WDRTS080q*DRTS080q+ 

WDRTS100q*DRTS100q+ WDRTS120q*DRTS120q+ WDRTS140q*DRTS140q+ 

     WDRTS160q*DRTS160q+ WDRTS180q*DRTS180q+ 

WDRTSELEq*DRTSELEq+  WDRTSFATq*DRTSFATq+ WDRTSODIq*DRTSODIq+ 

     WDRTSUGRq*DRTSUGRq+ 

WDRTTFATq*DRTTFATq+ WDRTTHEOq*DRTTHEOq+ WDRTVARAq*DRTVARAq+

 WDRTVB1q*DRTVB1q+ 

     WDRTVB2q*DRTVB2q+ WDRTVB6q*DRTVB6q+ 

WDRTVB12q*DRTVB12q+ WDRTVCq*DRTVCq+ WDRTVKq*DRTVKq+ 

WDRTZINCq*DRTZINCq))**2; 

 

 

  

 

*linear constraints; 

     lincon  

  /*weights for Nutrients sum to 1*/ 

     WDRTACARq+ WDRTATOCq+ WDRTBCARq+ 

WDRTCAFFq+ WDRTCALCq+ 

     WDRTCARBq+ WDRTCOPPq+ WDRTCRYPq+ 

WDRTFAq+ WDRTFDFEq+ 

     WDRTFFq+ WDRTFIBEq+ WDRTFOLAq+ 

WDRTIRONq+ WDRTLYCOq+ 

     WDRTLZq+ WDRTM161q+ WDRTM181q+ 

WDRTM201q+ WDRTM221q+ 

     WDRTMAGNq+ WDRTMFATq+ WDRTNIACq+

 WDRTP182q+ WDRTP183q+ 

     WDRTP204q+ WDRTP205q+  WDRTP225q+ 

WDRTP226q+ WDRTPFATq+ 

     WDRTPHOSq+ WDRTPOTAq+ WDRTPROTq+ 

WDRTRETq+ WDRTS040q+  

     WDRTS060q+ WDRTS080q+ WDRTS100q+ 

WDRTS120q+ WDRTS140q+ 

     WDRTS160q+ WDRTS180q+ WDRTSELEq+  

WDRTSFATq+ WDRTSODIq+ 

     WDRTSUGRq+ WDRTTFATq+ WDRTTHEOq+ 

WDRTVARAq+ WDRTVB1q+ 

     WDRTVB2q+ WDRTVB6q+ WDRTVB12q+ 

WDRTVCq+ WDRTVKq+ WDRTZINCq=1; 

 

*bounds on weights: all in (0,1); 

     bounds  
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      0<WDRTACARq<1, 0<WDRTATOCq<1, 

0<WDRTBCARq<1, 0<WDRTCAFFq<1, 0<WDRTCALCq<1, 

     0<WDRTCARBq<1, 0<WDRTCOPPq<1, 

0<WDRTCRYPq<1, 0<WDRTFAq<1, 0<WDRTFDFEq<1, 

     0<WDRTFFq<1, 0<WDRTFIBEq<1, 0<WDRTFOLAq<1, 

0<WDRTIRONq<1, 0<WDRTLYCOq<1, 

     0<WDRTLZq<1, 0<WDRTM161q<1, 0<WDRTM181q<1, 

0<WDRTM201q<1, 0<WDRTM221q<1, 

     0<WDRTMAGNq<1, 0<WDRTMFATq<1, 

0<WDRTNIACq<1, 0<WDRTP182q<1, 0<WDRTP183q<1, 

     0<WDRTP204q<1, 0<WDRTP205q<1,  

0<WDRTP225q<1, 0<WDRTP226q<1, 0<WDRTPFATq<1, 

     0<WDRTPHOSq<1, 0<WDRTPOTAq<1, 

0<WDRTPROTq<1, 0<WDRTRETq<1, 0<WDRTS040q<1,  

     0<WDRTS060q<1, 0<WDRTS080q<1, 

0<WDRTS100q<1, 0<WDRTS120q<1, 0<WDRTS140q<1, 

     0<WDRTS160q<1, 0<WDRTS180q<1, 

0<WDRTSELEq<1,  0<WDRTSFATq<1, 0<WDRTSODIq<1, 

     0<WDRTSUGRq<1, 0<WDRTTFATq<1, 

0<WDRTTHEOq<1, 0<WDRTVARAq<1, 0<WDRTVB1q<1, 

     0<WDRTVB2q<1, 0<WDRTVB6q<1, 

0<WDRTVB12q<1, 0<WDRTVCq<1, 0<WDRTVKq<1, 0<WDRTZINCq<1, 

 

 

/*determine set of "protective" nutrients by constraining vits to be negative and "negative" chems 

by constraining pcbs positive*/ 

     nutr>0.05; 

 

   

 

  

  

run;  

 

/*/*/*/*/*/*/*/*/*/*/*VALIDATE WEIGHTS IN VALIDATE DATASET*/*/*/*/*/*/*/*/*/*/*/; 

/*Populate dataset with weights and set MERGE-BY Variable*/ 

/* 

data outstuff; 

set work.outstuff; 

where _type_='PARMS'; 

sample=1; 

run; 

 

data validate; 

set app.validate; 

sample=1; 

run; 
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data VALIDATE; 

set VALIDATE; 

dummy=1; 

run; 

 

data means; 

set test_means; 

dummy=1; 

run; 

 

data VALIDATE; 

merge VALIDATE means; 

by dummy; 

run; 

data VALIDATE; 

set VALIDATE; 

chems_mean=   WLBX028LAq_mean*LBX028LAq+ 

WLBX066LAq_mean*LBX066LAq+ WLBX074LAq_mean*LBX074LAq+ 

WLBX105LAq_mean*LBX105LAq+ 

     WLBX118LAq_mean*LBX118LAq+ 

WLBX156LAq_mean*LBX156LAq+ WLBXD03LAq_mean*LBXD03LAq+ 

WLBXD05LAq_mean*LBXD05LAq+ 

     WLBXD07LAq_mean*LBXD07LAq+ 

WLBXF08LAq_mean*LBXF08LAq+ WLBXPCBLAq_mean*LBXPCBLAq+ 

WLBX044LAq_mean*LBX044LAq+ 

     WLBX049LAq_mean*LBX049LAq+ 

WLBX052LAq_mean*LBX052LAq+ WLBX087LAq_mean*LBX087LAq+ 

WLBX099LAq_mean*LBX099LAq+  

     WLBX101LAq_mean*LBX101LAq+ 

WLBX110LAq_mean*LBX110LAq+ WLBX138LAq_mean*LBX138LAq+ 

WLBX146LAq_mean*LBX146LAq+  

     WLBX149LAq_mean*LBX149LAq+ 

WLBX151LAq_mean*LBX151LAq+ WLBX153LAq_mean*LBX153LAq+ 

WLBX170LAq_mean*LBX170LAq+  

     WLBX177LAq_mean*LBX177LAq+ 

WLBX178LAq_mean*LBX178LAq+ WLBX180LAq_mean*LBX180LAq+ 

WLBX183LAq_mean*LBX183LAq+  

     WLBX187LAq_mean*LBX187LAq+ 

WLBX194LAq_mean*LBX194LAq+ WLBX196LAq_mean*LBX196LAq+ 

WLBX206LAq_mean*LBX206LAq+  

     WLBX209LAq_mean*LBX209LAq+ 

WLBXBCDq_mean*LBXBCDq+     WLBXBPBq_mean*LBXBPBq+     

WLBXTHGq_mean*LBXTHGq; 

 ; 

 

run; 
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*/ 

 

/*VALIDATE WEIGHTS FROM TEST DATASET*/ 

 

data together; 

      merge app.validate_small outstuff; 

   nutr= WDRTACARq*DRTACARq+ WDRTATOCq*DRTATOCq+ 

WDRTBCARq*DRTBCARq+ WDRTCAFFq*DRTCAFFq+ WDRTCALCq*DRTCALCq+ 

     WDRTCARBq*DRTCARBq+

 WDRTCOPPq*DRTCOPPq+ WDRTCRYPq*DRTCRYPq+ WDRTFAq*DRTFAq+ 

WDRTFDFEq*DRTFDFEq+ 

     WDRTFFq*DRTFFq+ WDRTFIBEq*DRTFIBEq+ 

WDRTFOLAq*DRTFOLAq+ WDRTIRONq*DRTIRONq+ WDRTLYCOq*DRTLYCOq+ 

     WDRTLZq*DRTLZq+ WDRTM161q*DRTM161q+ 

WDRTM181q*DRTM181q+ WDRTM201q*DRTM201q+ WDRTM221q*DRTM221q+ 

     WDRTMAGNq*DRTMAGNq+ 

WDRTMFATq*DRTMFATq+ WDRTNIACq*DRTNIACq+ WDRTP182q*DRTP182q+ 

WDRTP183q*DRTP183q+ 

     WDRTP204q*DRTP204q+ WDRTP205q*DRTP205q+  

WDRTP225q*DRTP225q+ WDRTP226q*DRTP226q+ WDRTPFATq*DRTPFATq+ 

     WDRTPHOSq*DRTPHOSq+

 WDRTPOTAq*DRTPOTAq+ WDRTPROTq*DRTPROTq+ WDRTRETq*DRTRETq+ 

WDRTS040q*DRTS040q+  

     WDRTS060q*DRTS060q+ WDRTS080q*DRTS080q+ 

WDRTS100q*DRTS100q+ WDRTS120q*DRTS120q+ WDRTS140q*DRTS140q+ 

     WDRTS160q*DRTS160q+ WDRTS180q*DRTS180q+ 

WDRTSELEq*DRTSELEq+  WDRTSFATq*DRTSFATq+ WDRTSODIq*DRTSODIq+ 

     WDRTSUGRq*DRTSUGRq+ 

WDRTTFATq*DRTTFATq+ WDRTTHEOq*DRTTHEOq+ WDRTVARAq*DRTVARAq+

 WDRTVB1q*DRTVB1q+ 

     WDRTVB2q*DRTVB2q+ WDRTVB6q*DRTVB6q+ 

WDRTVB12q*DRTVB12q+ WDRTVCq*DRTVCq+ WDRTVKq*DRTVKq+ 

WDRTZINCq*DRTZINCq; 

 

 

  run; 

 

 

/* 

 

proc genmod data=together ; 

class bin_race riagendr ; 

   model logalt =nutr    bin_race age age*age riagendr  indfmpir  bmxbmi /type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

*/ 
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/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*BOOTSTRAP NUTRITION 

WEIGHTS*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/; 

     

 

 

  

proc surveyselect data=app.test_small method=urs n=464 

reps=1000 seed=113084 outhits out=work.boot_test; 

run; 

 

data start; 

   _type_='PARMS'; 

   alpha=2; nutr=0.10001; CHEMS=0.1; b1=0.1; b2=0.1; b3=-0.2; b4=0.1; b5=0.01; B6=-0.1;  

sigma=1.0;  

     array inwts  

 

 WDRTACARq   WDRTATOCq  WDRTBCARq WDRTCAFFq WDRTCALCq  

WDRTCARBq  

 WDRTCOPPq WDRTCRYPq WDRTFAq WDRTFDFEq WDRTFFq WDRTFIBEq 

WDRTFOLAq WDRTIRONq  

 WDRTLYCOq WDRTLZq WDRTM161q  WDRTM181q WDRTM201q WDRTM221q 

WDRTMAGNq WDRTMFATq WDRTNIACq 

 WDRTP182q WDRTP183q  WDRTP204q WDRTP205q  WDRTP225q WDRTP226q 

WDRTPFATq WDRTPHOSq 

 WDRTPOTAq WDRTPROTq WDRTRETq WDRTS040q WDRTS060q WDRTS080q  

WDRTS100q WDRTS120q WDRTS140q 

 WDRTS160q WDRTS180q WDRTSELEq  WDRTSFATq WDRTSODIq 

WDRTSUGRq WDRTTFATq WDRTTHEOq WDRTVARAq 

 WDRTVB1q WDRTVB2q WDRTVB6q WDRTVB12q WDRTVCq WDRTVKq 

WDRTZINCq 

 

  

 ; 

          

        

  do over inwts; 

     inwts=1/56; 

  end; 

 

proc nlp data=work.boot_test technique=trureg 

         maxiter=10000 maxfunc=10000 inest=start outest=outstuff nomiss;   

 

*set by variable for bootstrap samples; 

by replicate;  

*objective function; 

     max logL;                                              
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*define parameters; *nutr; 

     parms alpha nutr CHEMS  b1 b2 b3 b4 b5 B6 

  WDRTACARq   WDRTATOCq  WDRTBCARq WDRTCAFFq WDRTCALCq  

WDRTCARBq  

 WDRTCOPPq WDRTCRYPq WDRTFAq WDRTFDFEq WDRTFFq WDRTFIBEq 

WDRTFOLAq WDRTIRONq  

 WDRTLYCOq WDRTLZq WDRTM161q  WDRTM181q WDRTM201q WDRTM221q 

WDRTMAGNq WDRTMFATq WDRTNIACq 

 WDRTP182q WDRTP183q  WDRTP204q WDRTP205q  WDRTP225q WDRTP226q 

WDRTPFATq WDRTPHOSq 

 WDRTPOTAq WDRTPROTq WDRTRETq WDRTS040q WDRTS060q WDRTS080q  

WDRTS100q WDRTS120q WDRTS140q 

 WDRTS160q WDRTS180q WDRTSELEq  WDRTSFATq WDRTSODIq 

WDRTSUGRq WDRTTFATq WDRTTHEOq WDRTVARAq 

 WDRTVB1q WDRTVB2q WDRTVB6q WDRTVB12q WDRTVCq WDRTVKq 

WDRTZINCq ;         

                       

*program statements; 

    logL= -0.5*log(sigma)-0.5*(1/sigma)*(logALT-alpha- 

  - b1*bin_race - b2*RIDAGEYR -b6*RIDAGEYR*ridageyr- b3*riagendr- -b4*indfmpir-

b5*bmxbmi 

 

     

 

   -nutr* (WDRTACARq*DRTACARq+ WDRTATOCq*DRTATOCq+ 

WDRTBCARq*DRTBCARq+ WDRTCAFFq*DRTCAFFq+ WDRTCALCq*DRTCALCq+ 

     WDRTCARBq*DRTCARBq+

 WDRTCOPPq*DRTCOPPq+ WDRTCRYPq*DRTCRYPq+ WDRTFAq*DRTFAq+ 

WDRTFDFEq*DRTFDFEq+ 

     WDRTFFq*DRTFFq+ WDRTFIBEq*DRTFIBEq+ 

WDRTFOLAq*DRTFOLAq+ WDRTIRONq*DRTIRONq+ WDRTLYCOq*DRTLYCOq+ 

     WDRTLZq*DRTLZq+ WDRTM161q*DRTM161q+ 

WDRTM181q*DRTM181q+ WDRTM201q*DRTM201q+ WDRTM221q*DRTM221q+ 

     WDRTMAGNq*DRTMAGNq+ 

WDRTMFATq*DRTMFATq+ WDRTNIACq*DRTNIACq+ WDRTP182q*DRTP182q+ 

WDRTP183q*DRTP183q+ 

     WDRTP204q*DRTP204q+ WDRTP205q*DRTP205q+  

WDRTP225q*DRTP225q+ WDRTP226q*DRTP226q+ WDRTPFATq*DRTPFATq+ 

     WDRTPHOSq*DRTPHOSq+

 WDRTPOTAq*DRTPOTAq+ WDRTPROTq*DRTPROTq+ WDRTRETq*DRTRETq+ 

WDRTS040q*DRTS040q+  

     WDRTS060q*DRTS060q+ WDRTS080q*DRTS080q+ 

WDRTS100q*DRTS100q+ WDRTS120q*DRTS120q+ WDRTS140q*DRTS140q+ 

     WDRTS160q*DRTS160q+ WDRTS180q*DRTS180q+ 

WDRTSELEq*DRTSELEq+  WDRTSFATq*DRTSFATq+ WDRTSODIq*DRTSODIq+ 

     WDRTSUGRq*DRTSUGRq+ 

WDRTTFATq*DRTTFATq+ WDRTTHEOq*DRTTHEOq+ WDRTVARAq*DRTVARAq+

 WDRTVB1q*DRTVB1q+ 
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     WDRTVB2q*DRTVB2q+ WDRTVB6q*DRTVB6q+ 

WDRTVB12q*DRTVB12q+ WDRTVCq*DRTVCq+ WDRTVKq*DRTVKq+ 

WDRTZINCq*DRTZINCq))**2; 

 

 

  

 

*linear constraints; 

     lincon  

  /*weights for Nutrients sum to 1*/ 

     WDRTACARq+ WDRTATOCq+ WDRTBCARq+ 

WDRTCAFFq+ WDRTCALCq+ 

     WDRTCARBq+ WDRTCOPPq+ WDRTCRYPq+ 

WDRTFAq+ WDRTFDFEq+ 

     WDRTFFq+ WDRTFIBEq+ WDRTFOLAq+ 

WDRTIRONq+ WDRTLYCOq+ 

     WDRTLZq+ WDRTM161q+ WDRTM181q+ 

WDRTM201q+ WDRTM221q+ 

     WDRTMAGNq+ WDRTMFATq+ WDRTNIACq+

 WDRTP182q+ WDRTP183q+ 

     WDRTP204q+ WDRTP205q+  WDRTP225q+ 

WDRTP226q+ WDRTPFATq+ 

     WDRTPHOSq+ WDRTPOTAq+ WDRTPROTq+ 

WDRTRETq+ WDRTS040q+  

     WDRTS060q+ WDRTS080q+ WDRTS100q+ 

WDRTS120q+ WDRTS140q+ 

     WDRTS160q+ WDRTS180q+ WDRTSELEq+  

WDRTSFATq+ WDRTSODIq+ 

     WDRTSUGRq+ WDRTTFATq+ WDRTTHEOq+ 

WDRTVARAq+ WDRTVB1q+ 

     WDRTVB2q+ WDRTVB6q+ WDRTVB12q+ 

WDRTVCq+ WDRTVKq+ WDRTZINCq=1; 

 

*bounds on weights: all in (0,1); 

     bounds  

      0<WDRTACARq<1, 0<WDRTATOCq<1, 

0<WDRTBCARq<1, 0<WDRTCAFFq<1, 0<WDRTCALCq<1, 

     0<WDRTCARBq<1, 0<WDRTCOPPq<1, 

0<WDRTCRYPq<1, 0<WDRTFAq<1, 0<WDRTFDFEq<1, 

     0<WDRTFFq<1, 0<WDRTFIBEq<1, 0<WDRTFOLAq<1, 

0<WDRTIRONq<1, 0<WDRTLYCOq<1, 

     0<WDRTLZq<1, 0<WDRTM161q<1, 0<WDRTM181q<1, 

0<WDRTM201q<1, 0<WDRTM221q<1, 

     0<WDRTMAGNq<1, 0<WDRTMFATq<1, 

0<WDRTNIACq<1, 0<WDRTP182q<1, 0<WDRTP183q<1, 

     0<WDRTP204q<1, 0<WDRTP205q<1,  

0<WDRTP225q<1, 0<WDRTP226q<1, 0<WDRTPFATq<1, 
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     0<WDRTPHOSq<1, 0<WDRTPOTAq<1, 

0<WDRTPROTq<1, 0<WDRTRETq<1, 0<WDRTS040q<1,  

     0<WDRTS060q<1, 0<WDRTS080q<1, 

0<WDRTS100q<1, 0<WDRTS120q<1, 0<WDRTS140q<1, 

     0<WDRTS160q<1, 0<WDRTS180q<1, 

0<WDRTSELEq<1,  0<WDRTSFATq<1, 0<WDRTSODIq<1, 

     0<WDRTSUGRq<1, 0<WDRTTFATq<1, 

0<WDRTTHEOq<1, 0<WDRTVARAq<1, 0<WDRTVB1q<1, 

     0<WDRTVB2q<1, 0<WDRTVB6q<1, 

0<WDRTVB12q<1, 0<WDRTVCq<1, 0<WDRTVKq<1, 0<WDRTZINCq<1, 

 

 

/*determine set of "protective" nutrients by constraining vits to be negative and "negative" chems 

by constraining pcbs positive*/ 

     nutr>0.05; 

  

run;  

 

 

data work.outstuff; 

set work.outstuff; 

where _type_='PARMS'; 

run; 

 

 

/*Validate bootstrap samples in Validate dataset*/ 

/* 

data replicates; 

do replicate=1 to 1000; 

 do obs=1 to 464; output; 

 end; 

end; 

run; 

 

data valid_rep; 

set app.validate_small; 

obs=_n_; 

run; 

proc sort data=work.valid_rep; 

by obs; 

run; 

 

proc sort data=work.replicates; 

by obs; 

run; 

 

data valid_rep_tog; 

merge valid_rep replicates; 
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by obs; 

run; 

 

proc sort data=valid_rep_tog;; 

by replicate; 

run; 

 

proc sort data=outstuff; 

by replicate; 

run; 

*/ 

 

/*VALIDATE WEIGHTS FROM TEST DATASET*/ 

data together; 

      merge vboot_test outstuff; by replicate;  

 

 nutr=    WDRTACARq*DRTACARq+ WDRTATOCq*DRTATOCq+ 

WDRTBCARq*DRTBCARq+ WDRTCAFFq*DRTCAFFq+ WDRTCALCq*DRTCALCq+ 

     WDRTCARBq*DRTCARBq+

 WDRTCOPPq*DRTCOPPq+ WDRTCRYPq*DRTCRYPq+ WDRTFAq*DRTFAq+ 

WDRTFDFEq*DRTFDFEq+ 

     WDRTFFq*DRTFFq+ WDRTFIBEq*DRTFIBEq+ 

WDRTFOLAq*DRTFOLAq+ WDRTIRONq*DRTIRONq+ WDRTLYCOq*DRTLYCOq+ 

     WDRTLZq*DRTLZq+ WDRTM161q*DRTM161q+ 

WDRTM181q*DRTM181q+ WDRTM201q*DRTM201q+ WDRTM221q*DRTM221q+ 

     WDRTMAGNq*DRTMAGNq+ 

WDRTMFATq*DRTMFATq+ WDRTNIACq*DRTNIACq+ WDRTP182q*DRTP182q+ 

WDRTP183q*DRTP183q+ 

     WDRTP204q*DRTP204q+ WDRTP205q*DRTP205q+  

WDRTP225q*DRTP225q+ WDRTP226q*DRTP226q+ WDRTPFATq*DRTPFATq+ 

     WDRTPHOSq*DRTPHOSq+

 WDRTPOTAq*DRTPOTAq+ WDRTPROTq*DRTPROTq+ WDRTRETq*DRTRETq+ 

WDRTS040q*DRTS040q+  

     WDRTS060q*DRTS060q+ WDRTS080q*DRTS080q+ 

WDRTS100q*DRTS100q+ WDRTS120q*DRTS120q+ WDRTS140q*DRTS140q+ 

     WDRTS160q*DRTS160q+ WDRTS180q*DRTS180q+ 

WDRTSELEq*DRTSELEq+  WDRTSFATq*DRTSFATq+ WDRTSODIq*DRTSODIq+ 

     WDRTSUGRq*DRTSUGRq+ 

WDRTTFATq*DRTTFATq+ WDRTTHEOq*DRTTHEOq+ WDRTVARAq*DRTVARAq+

 WDRTVB1q*DRTVB1q+ 

     WDRTVB2q*DRTVB2q+ WDRTVB6q*DRTVB6q+ 

WDRTVB12q*DRTVB12q+ WDRTVCq*DRTVCq+ WDRTVKq*DRTVKq+ 

WDRTZINCq*DRTZINCq; 

 

run; 

  

data together;  

set work.together; 
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if ridreth1=3 then bin_race=1; 

else bin_race=0; 

run;  

 

proc genmod data=together ; 

by replicate; 

class bin_race riagendr ; 

   model logalt =  nutr bin_race RIDAGEYR  RIDAGEYR*RIDAGEYR riagendr  indfmpir  

bmxbmi/type3;/*nutr*/ 

   ods output ParameterEstimates=parms; 

    run; 

 

 

 

data nutr; 

set work.parms; 

where parameter='nutr'; 

if probchisq<=0.05 then power=1; 

else power=0; 

run; 

 

proc freq data=nutr; 

tables power; 

run; 

  

data nutr_weights; 

merge nutr outstuff; 

by replicate; 

run;  

 

ods rtf file='C:\Users\carrck\Documents\Dissertation\application chapter\Application 

Chapter\means_nutr.rtf'; 

proc means data=nutr_weights; 

where power=1; 

var WDRTACARq   WDRTATOCq  WDRTBCARq WDRTCAFFq WDRTCALCq  

WDRTCARBq  

 WDRTCOPPq WDRTCRYPq WDRTFAq WDRTFDFEq WDRTFFq WDRTFIBEq 

WDRTFOLAq WDRTIRONq  

 WDRTLYCOq WDRTLZq WDRTM161q  WDRTM181q WDRTM201q WDRTM221q 

WDRTMAGNq WDRTMFATq WDRTNIACq 

 WDRTP182q WDRTP183q  WDRTP204q WDRTP205q  WDRTP225q WDRTP226q 

WDRTPFATq WDRTPHOSq 

 WDRTPOTAq WDRTPROTq WDRTRETq WDRTS040q WDRTS060q WDRTS080q  

WDRTS100q WDRTS120q WDRTS140q 

 WDRTS160q WDRTS180q WDRTSELEq  WDRTSFATq WDRTSODIq 

WDRTSUGRq WDRTTFATq WDRTTHEOq WDRTVARAq 

 WDRTVB1q WDRTVB2q WDRTVB6q WDRTVB12q WDRTVCq WDRTVKq 

WDRTZINCq; 
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 ods output summary=means; 

 

 run; 

 ods rtf close; 

 

 

 

 

data validate; 

set app.validate_small; 

dummy=1; 

run; 

 

data means; 

set work.means; 

dummy=1; 

run; 

 

data val_means; 

merge validate means; 

by dummy; 

run; 

 

 

data val_means; 

set val_means; 

nutr_mean=   WDRTACARq_mean*DRTACARq+ 

WDRTATOCq_mean*DRTATOCq+ WDRTBCARq_mean*DRTBCARq+ 

WDRTCAFFq_mean*DRTCAFFq+ WDRTCALCq_mean*DRTCALCq+ 

     WDRTCARBq_mean*DRTCARBq+

 WDRTCOPPq_mean*DRTCOPPq+ WDRTCRYPq_mean*DRTCRYPq+ 

WDRTFAq_mean*DRTFAq+ WDRTFDFEq_mean*DRTFDFEq+ 

     WDRTFFq_mean*DRTFFq+ 

WDRTFIBEq_mean*DRTFIBEq+ WDRTFOLAq_mean*DRTFOLAq+ 

WDRTIRONq_mean*DRTIRONq+ WDRTLYCOq_mean*DRTLYCOq+ 

     WDRTLZq_mean*DRTLZq+ 

WDRTM161q_mean*DRTM161q+ WDRTM181q_mean*DRTM181q+ 

WDRTM201q_mean*DRTM201q+ WDRTM221q_mean*DRTM221q+ 

     WDRTMAGNq_mean*DRTMAGNq+ 

WDRTMFATq_mean*DRTMFATq+ WDRTNIACq_mean*DRTNIACq+

 WDRTP182q_mean*DRTP182q+ WDRTP183q_mean*DRTP183q+ 

     WDRTP204q_mean*DRTP204q+ 

WDRTP205q_mean*DRTP205q+  WDRTP225q_mean*DRTP225q+ 

WDRTP226q_mean*DRTP226q+ WDRTPFATq_mean*DRTPFATq+ 

     WDRTPHOSq_mean*DRTPHOSq+

 WDRTPOTAq_mean*DRTPOTAq+ WDRTPROTq_mean*DRTPROTq+ 

WDRTRETq_mean*DRTRETq+ WDRTS040q_mean*DRTS040q+  
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     WDRTS060q_mean*DRTS060q+ 

WDRTS080q_mean*DRTS080q+ WDRTS100q_mean*DRTS100q+ 

WDRTS120q_mean*DRTS120q+ WDRTS140q_mean*DRTS140q+ 

     WDRTS160q_mean*DRTS160q+ 

WDRTS180q_mean*DRTS180q+ WDRTSELEq_mean*DRTSELEq+  

WDRTSFATq_mean*DRTSFATq+ WDRTSODIq_mean*DRTSODIq+ 

     WDRTSUGRq_mean*DRTSUGRq+ 

WDRTTFATq_mean*DRTTFATq+ WDRTTHEOq_mean*DRTTHEOq+ 

WDRTVARAq_mean*DRTVARAq+ WDRTVB1q_mean*DRTVB1q+ 

     WDRTVB2q_mean*DRTVB2q+ 

WDRTVB6q_mean*DRTVB6q+ WDRTVB12q_mean*DRTVB12q+ 

WDRTVCq_mean*DRTVCq+ WDRTVKq_mean*DRTVKq+ 

WDRTZINCq_mean*DRTZINCq; 

; 

  

 

run; 

 

 

 

proc genmod data=val_means; 

class bin_race riagendr ; *nutr_mean; 

   model logalt = nutr_mean   bin_race RIDAGEYR RIDAGEYR*RIDAGEYR riagendr  

indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

data app.parms_nutr0304; 

set work.parms; run; 

 

data app.val_means; 

merge val_means app.val_means; 

by seqn; 

run;  

 

 

proc contents data=app.val_means; run; 

 

 

proc genmod data=app.val_means; 

class bin_race riagendr ;  

   model logalt = nutr_mean chems_mean  bin_race RIDAGEYR RIDAGEYR*RIDAGEYR 

riagendr  indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

 

data app.FINAL; 



www.manaraa.com

 
 

136 
 

set app.val_means; 

AGE=RIDAGEYR/10; 

run; 

 

 

proc genmod data=app.val_means; 

class bin_race riagendr ;  

   model logalt = nutr_mean chems_mean  bin_race RIDAGEYR RIDAGEYR*RIDAGEYR 

riagendr  indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

libname app 'C:\Users\carrck\Documents\Dissertation\application chapter\Application Chapter'; 

 

data app.final; 

set app.final; 

age=ridageyr/10; 

run; 

 

symbol v=dot i=sm80s; 

proc gplot data=app.final; 

plot logalt*ridageyr; 

label ridageyr= 'Age in Years'; 

run;  

 

ods html newfile=proc;  

proc genmod data=app.final_mar05; 

class bin_race riagendr ;  

   model logalt = chems_mean bin_race age age*age riagendr  indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

 

     

proc genmod data=app.final_mar05; 

class bin_race riagendr ;  

   model logalt = nutr_mean age age*age bin_race  riagendr  indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

 

     

proc genmod data=app.final_mar05; 

class bin_race riagendr ;  

   model logalt = chems_mean nutr_mean age age*age bin_race  riagendr  indfmpir  

bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 
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proc genmod data=app.final_mar05; 

class bin_race riagendr ;  

   model logalt = chems_mean nutr_mean chems_mean*nutr_mean age age*age bin_race  

riagendr  indfmpir  bmxbmi/type3; 

   ods output ParameterEstimates=parms; 

    run; 

 

/*Plot Surface*/ 

data app.pcb_nutr_data_nomiss; 

set app.pcb_nutr_data_nomiss; 

if ridreth1=3 then bin_race=1; 

else bin_race=0; 

age=ridageyr/10; run; 

 

proc means data=app.pcb_nutr_data_nomiss; 

var bin_race age riagendr indfmpir bmxbmi; 

run;  

 

data forplot;  

do ECS=0 to 3 by 0.1;  

do NSS=0 to 3 by 0.1; output;  

end; end; run;  

 

data app.forplot; 

set work.forplot; 

alt_avg= exp(2.516+ECS*0.091 +NSS*0.132); 

alt_men=exp(2.863+ECS*0.091 +NSS*0.132); 

alt_women=exp(2.637+ECS*0.091 +NSS*0.132); 

; run; 

proc means data=app.forplot;  

var alt_men; 

run; 

goptions htext=1.7; run; 

proc g3d data=app.forplot; 

plot ECS*NSS=alt /grid; 

label alt= 'Mean ALT'; 

run; 

 

 ods rtf file='C:\Users\carrck\Documents\Dissertation\application chapter\Application 

Chapter\contours.rtf'; 

goptions reset=all; 

goptions htext=1.7 font=swiss; 

axis1  LABEL=(angle=90 COLOR=black  "NSS"); 

symbol1 Value="18" 

  color=black 
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        height=1.2 

   font="swiss"; 

symbol2 Value="20" 

  color=black 

        height=1.2 

   font="swiss"; 

symbol3 Value="22" 

  color=black 

        height=1.2 

   font="swiss"; 

symbol4 Value="24" 

  color=black 

        height=1.2 

   font="swiss";  

symbol5 Value="26" 

  color=black 

        height=1.2 

   font="swiss";  

symbol6 Value="28" 

  color=black 

        height=1.2 

   font="swiss";  

symbol7 Value="RISK(30)" 

  color=red 

        height=1.5 

   font="swiss";  

symbol8 Value="RISK(32)" 

  color=red 

  height=1.5 

  font="swiss";  

proc gcontour data=app.forplot;  

plot NSS*ECS=alt_men  /autolabel=(check=none) levels= 18 to 32 by 2 vaxis=axis1 vref=2 

wvref=3 nolegend; 

label alt_men="Predicted Mean ALT for Men"; 

run; 

 

goptions reset=all; 

goptions htext=1.7 font=swiss; 

axis1  LABEL=(angle=90 COLOR=black  "NSS"); 

symbol1 Value="15" 

  color=black 

        height=1.5 

   font="swiss"; 

symbol2 Value="17" 

  color=black 

        height=1.5 

   font="swiss"; 

symbol3 Value="RISK(19)" 
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  color=red 

        height=1.5 

   font="swiss"; 

symbol4 Value="RISK(21)" 

  color=red 

        height=1.5 

   font="swiss"; 

symbol5 Value="RISK(23)" 

  color=red 

        height=1.5 

   font="swiss"; 

symbol6 Value="RISK(25)" 

  color=red 

        height=1.5 

   font="swiss"; 

symbol7 Value="RISK(27)" 

  color=red 

        height=1.5 

   font="swiss";  

symbol8 Value="RISK(29)" 

  color=red 

  height=1.5 

  font="swiss";  

  goptions htext=1.7 font=swiss; 

 

proc gcontour data=app.forplot ;  

plot  NSS*ECS=alt_women  /autolabel=(check=none) levels= 15 to 27 by 2 vaxis=axis1 

vref=0.25 wvref=3 nolegend; 

label alt_women= "Predicted Mean ALT for Women"; 

run; 

 

ods rtf close; 

proc print data=app.chems_means0304; 

run; 
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